DOI QR코드

DOI QR Code

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid (Department of Metallurgical and Materials Engineering, Middle East Technical University) ;
  • Gur, Cemil Hakan (Department of Metallurgical and Materials Engineering, Middle East Technical University)
  • Received : 2021.03.11
  • Accepted : 2021.04.21
  • Published : 2021.05.27

Abstract

P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Keywords

Acknowledgement

This research work is conducted at Department of Metallurgical and Materials Engineering, METU, Ankara. The authors would like to thank Welding Technology and NDT Research/Application Center (METU, Ankara) officials, Dr. Koray Yurtisik and Murat Tolga Erturk for the arrangement of P91 material. Authors also extends acknowledgment for Dr. Onder Sahin and Huseyin Ceylan for their help in conducting creep rupture tests at Instron.

References

  1. Council of The American Society of Mechanical Engineers, Rules for construction of Power Boilers (I), Nuclear Facility Components (III) & Pressure Vessels (VIII), 2015, 46 (2015).
  2. V. K. Sikka and P. Patriarca, Analysis of weldment mechanical properties of modified 9 Cr-1Mo steel, Oak Ridge National Laboratory, Retrieved May 1, 1984 from https://inis.iaea.org/search/search.aspx?orig_q=RN: 17007091.
  3. S. Spigarelli, Int. J. Press. Vess. Pip., 101, 64 (2013). https://doi.org/10.1016/j.ijpvp.2012.10.005
  4. L. Maddi, D. Barbadikar, M. Sahare, A. R. Ballal, D. R. Peshwe, R. K. Paretkar, K. Laha and M. D. Mathew, Trans. Ind. Inst. Met., 68, 259 (2015). https://doi.org/10.1007/s12666-015-0586-9
  5. M. A. Abro and D. B. Lee, Coatings, 7, 31 (2017). https://doi.org/10.3390/coatings7020031
  6. M. Akhtar, A. Khajuria, M. K. Pandey, I. Ahmed and R. Bedi, Mater. Res. Express, 6, 12 (2019).
  7. J. P. Sanhueza, D. Rojas, J. Garcia, M. F. Melendrez, E. Toledo, C. Montalba, M. I. Alvarado and A. F. Jaramillo, Mater. Res. Express, 6, 11 (2019).
  8. M. A. Abro, J. Hahn and D. B. Lee, Korean J. Met. Mater., 57, 236 (2019). https://doi.org/10.3365/KJMM.2019.57.4.236
  9. C. Pandey, Mater. Res. Express, 6, 9 (2019).
  10. M. Swei, A. S. Sedmak, B. Petrovski, Z. Z. Golubovi, S. A. Sedmak, M. Katini, and K. I. Azzab, Therm. Sci., 23, 1203 (2019). https://doi.org/10.2298/TSCI170729240S
  11. F. Vivier, C. Panait, A. F. Gourgues-Lorenzon and J. Besson, Proceedings of 17th European Conference on Fracture, p. 1095, Brno, Czech Republic (2008).
  12. C. Panait, W. Bendick, A. Fuchsmann, A. F. Gourgues-Lorenzon and J. Besson, Int. J. Press. Vess. Pip., 87, 326 (2010). https://doi.org/10.1016/j.ijpvp.2010.03.017
  13. L. Huijun and D. Mitchell, Steel Res. Int., 84, 1302 (2013). https://doi.org/10.1002/srin.201300055
  14. Committee A01 of American Society for Testing and Materials, Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service (ASTM A335/A335M), 19, 2 (2019).
  15. C. Yunxiang, W. Yan, Hu. Ping, S. Yiyin and K. Yang, Acta Metall. Sin., 47, 1372 (2011).
  16. J. Besson, S. Leclercq, V. Gaffard and A. F. Gourgues-Lorenzon, Eng. Fract. Mech., 76, 1460 (2009). https://doi.org/10.1016/j.engfracmech.2008.12.007
  17. B. Wilshire and P. J. Scharning, Mater High Temp., 25, 55 (2014).
  18. T. Masse and Y. Lejeail, Nucl. Eng. Des., 246, 220 (2012). https://doi.org/10.1016/j.nucengdes.2012.02.006
  19. K. Kimura, K. Suzuki, Y. Toda, H. Kushima and F. Abe, Proceedings of 28th MPA-NIMS Workshop on Safety and Availability in Energy Engineering, 2, p. 43, Stuttgart, Germany (2002).
  20. A. Sedmak, M. Swei and B. Petrosvski, Fatig. Fract. Eng. Mater. Struct., 40, 1267 (2017). https://doi.org/10.1111/ffe.12628
  21. M. T. Whittaker and W. J. Harrison, Mater. High Temp., 31, 233 (2014). https://doi.org/10.1179/1878641314Y.0000000019
  22. B. Wilshire and M. T. Whittaker, Acta Mater., 57, 4115 (2009). https://doi.org/10.1016/j.actamat.2009.05.009
  23. F. Dyson and T. B. Gibbons, Acta Metall, 35, 2355 (1987). https://doi.org/10.1016/0001-6160(87)90083-6
  24. A. Raj, N. Roy, B. N. Roy and A. K. Ray, High Temp. Mater. Processes (Berlin, Ger.), 34, 731 (2015)
  25. M. F. Ashby and B. F. Dyson, Proceedings of 6th International Conference on Fracture (ICF6), p. 3, New Delhi, India (1984).
  26. M. J. Aslam and C. H. Gur, Proceeding of the 7th International Iron & Steel Symposium, p. 374, Izmir, Turkey (2019).
  27. Committee E28 of American Society for Testing and Materials, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials (ASTM A139/ A139M), 11, 4 (2018).
  28. M. E. A. El-Azim, O. H. Ibrahim, O. E. El-Desoky, Mater. Sci. Eng., A, 560, 678 (2013). https://doi.org/10.1016/j.msea.2012.10.013
  29. O. Nassif, T. J. Truster, R. Ma, K. B. Cochran, D. M. Parks, M. C. Messner and T.-L. Sham, Model. Simulat. Mater. Sci. Eng., 27, (2019).
  30. B. K. Choudhary and I, S. Edwin, J. Nucl. Mater., 412, 82 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.024
  31. V. Gaffard, PhD Thesis, p. 161, Paris School of Mines, Paris (2004).
  32. K. Kimura, H. Kushima, K. Sawada, Mater. Sci. Eng., A, 510-511, 58 (2009). https://doi.org/10.1016/j.msea.2008.04.095
  33. T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche and K. K. Rink, Mater. Sci. Eng., A, 565, 382 (2013). https://doi.org/10.1016/j.msea.2012.12.031
  34. L. An, Q. Xu, D. Xu and Z. Lou, Proceeding of the 10th International Conference on Science Computing, p. 184, Las Vegas, USA (2013).
  35. B. K. Choudhary, C. Phaniraj and B. Raj, Tran. Ind. Inst. Metals, 63, 675 (2010). https://doi.org/10.1007/s12666-010-0103-0