DOI QR코드

DOI QR Code

Immuno-stimulating and anti-metastatic activities of the polysaccharides isolated from Angelica gigas

참당귀로부터 분리한 다당의 면역증진 활성과 항전이 활성

  • Son, Seung-U (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • 손승우 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2021.03.12
  • Accepted : 2021.05.10
  • Published : 2021.06.30

Abstract

The present study aimed to develop new physiologically active ingredients from Angelica gigas. The polysaccharides purified from A. gigas, AGE-2c-I, showed potent anti-complementary activity in a dose-dependent manner. C3 activation products were identified through crossed immuno-electrophoresis using anti-human C3 antibodies and the anti-complementary activity of AGE-2c-I under Ca++-free conditions suggests that AGE-2c-I may induce complementary activation via both alternative and classical pathways. In addition, AGE-2c-I augmented the production of various cytokines, such as interleukin (IL)-6, IL-10, IL-12, and tumor necrosis factor-α, by peritoneal macrophages. Furthermore, intravenous (i.v.) administration of AGE-2c-I dose-dependently enhanced natural killer cell cytotoxicity against YAC-1 lymphoma. In experimental lung metastasis, prophylactic i.v. administration of AGE-2c-I inhibited lung metastasis by 58% at 100 ㎍/mouse. From the above results, we suggest that AGE-2c-I purified from A. gigas has potent immune system-stimulating activities, and is a potentially promising food ingredient beneficial to human health.

참당귀로부터 열수추출 및 에탄올 침전법을 이용해 조다당을 분리하고 DEAE-Sepharose FF와 Sephadex G-100을 이용하여 얻은 정제 다당 AGE-2c-I을 대상으로 선천 면역 활성 및 항종양 전이 효과를 확인하고자 하였다. 인체의 초기 면역 반응에 있어 중추적인 역할을 수행하는 보체계 활성화 및 활성화 경로를 확인한 결과, AGE-2c-I은 운지버섯 유래 시판 면역증강제인 PSK에 준하는 우수한 활성을 나타내는 것으로 확인되었으며. 본 활성은 주로 고전경로를 통하여 활성화되며 일부 부경로를 경유하는 것으로 최종 확인되었다. 또한 AGE-2c-I은 mouse 복강 유래 대식세포에 대해 직접적인 독성을 나타내지 않으며 종양세포주 YAC-1 및 B16BL6에 대한 직접적인 독성 또한 나타나지 않음을 확인함으로써 시료의 직접적인 독성에 근거한 항암 효과는 없는 것으로 확인되었다. 반면에 비장으로부터 분리한 림프구는 8 ㎍/mL의 AGE-2c-I 처리에 의해 증식능이 관찰되었다. AGE-2c-I이 대식세포의 cytokine 분비능에 미치는 효과를 확인한 결과, 우수한 IL-6, IL-12 및 TNF-α 분비능을 보였으며 시료를 200 ㎍ 및 1,000 ㎍의 고농도로 처리한 실험군에서 IL-10이 분비된 것으로 보아 AGE-2c-I은 immune-stimulator의 역할뿐만 아니라 immune-suppressor로서의 작용 또한 가능한 것으로 확인되었다. 한편 종양 및 암세포에 대하여 직접적인 살해 활성을 나타내는 NK cell 활성을 확인한 실험에서는 농도 의존적인 종양 세포 살해능을 확인할 수 있었으며 100 ㎍/mouse 농도에서 NC 대비 약 1.5배 높은 NK cell 활성을 나타냈을 뿐만 아니라, 폐에 대한 고전이성 종양세포주인 B16BL6 melanoma 세포를 이용한 실험동물 종양 전이 모델에선 100 ㎍/mouse 농도로 처리한 실험군이 NC 대비 58%의 colony가 감소한 것을 확인할 수 있었다. 이상의 결과로 부터 참당귀 유래 RG-I 구조의 다당은 높은 선천면역계 자극 활성, 특히 보체계, 대식세포, 림프구 증식, NK cell의 활성화를 통해 우수한 항종양 전이 효과를 갖는 것으로 최종 확인되었으며 건강기능성식품 소재로의 개발가치가 우수한 것으로 판단되었다.

Keywords

Acknowledgement

이 논문은 2019학년도 경기대학교 연구년 수혜로 연구되었습니다.

References

  1. Bienenstock J, Befus AD. Mucosal immunology. Immunology. 41: 249-270 (1980)
  2. Cerwenka AL. Natural killer cells, viruses and cancer. Nature Rev. Immunol. 1: 41 (2001) https://doi.org/10.1038/35095564
  3. Cheng A, Wan F, Wang J, Jin Z, Xu X. Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis fish. Int. Immunopharmacol. 8: 43-50 (2008) https://doi.org/10.1016/j.intimp.2007.10.006
  4. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 100: 1935-1947 (2002) https://doi.org/10.1182/blood-2002-02-0350
  5. Funk J. Schmitz G. Bach U. Influence of different tumour types on natural cytotoxicity (NK cell activity) and mitogen-induced lymphocyte proliferation in isolated blood lymphocytes from 110 dogs with tumours. Res. Vet. Sci. 74: 129-135 (2003) https://doi.org/10.1016/S0034-5288(02)00157-1
  6. Ito H. Effects of the antitumor agents from various natural sources on drug-metabolizing system, phagocytic activity and complement system in Sarcoma 180-bearing mice. Jpn. J. Pharmacol. 40: 435- 443 (1986) https://doi.org/10.1254/jjp.40.435
  7. James SP, Zeitz M. Human gastrointestinal Mucosal T cells. pp. 275-285. In: Handbook of Mucosal Immunology. Orga PL, Mestecky J, Elamm M, Strober W, McGhee JR, Bienenstock J. Academic press, San Diego, USA. (1994)
  8. Janeway CA. Progress in immunology: Syndromes of diminished resistance to infection. J. Pediatr. 72: 885-903 (1968) https://doi.org/10.1016/s0022-3476(68)80446-9
  9. Joo SS, Park D, Shin S, Jeon JH, Kim TK, Choi YJ, Lee DI. Antiallergic effects and mechanisms of action of the ethanolic extract of Angelica gigas in dinitrofluorobenzene-induced inflammation models. Environ. Toxicol. Pharmacol. 30: 127-133 (2010) https://doi.org/10.1016/j.etap.2010.04.007
  10. Keller R, Keist R, Wechsler A, Leist PT, van der Meide PH. Mechanism of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int. J. Cancer. 46: 682-686 (1990) https://doi.org/10.1002/ijc.2910460422
  11. Kim HJ, Shin KS, Lee H. Characterization and action mode of anti-complementary substance prepared from Lactobacillus plantarum Korean J. Food Sci. Technol. 34: 290-295 (2002)
  12. Kim HM, Kang JS, Park SK, Lee K, Kim JY, Kim YJ, Han SB. Antidiabetic activity of angelan isolated from Angelica gigas Nakai. Arch. Pharmacal Res. 31: 1489-1496 (2008) https://doi.org/10.1007/s12272-001-2135-9
  13. Kim SY, Kim SH, Shin KS, Lee H. Physiological activities of ginsenoside-rich fraction isolated from Panax ginseng leaves. Food Sci. Biotechnol. 19: 803-808 (2010) https://doi.org/10.1007/s10068-010-0112-0
  14. Kwak BS, Hwang DH, Lee SJ, Choi HJ, Park HY, Shin KS. Rhamnogalacturonan-I-type polysaccharide purified from broccoli exerts anti-metastatic activities via innate immune cell activation. J. Med. Food. 22: 451-459 (2019) https://doi.org/10.1089/jmf.2018.4286
  15. Kwon MH, Sung HJ. Characteristics of immune response by polysaccharides with complement system activity. Food Sci. Indus. 30: 30-43 (1997)
  16. Lee S, Lee YS, Jung SH, Shin KH, Kim BK, Kang SS. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 26: 727-730 (2003) https://doi.org/10.1007/BF02976682
  17. Melton LD, McNeil M, Darvill AG, Albersheim P, Dell A. Structural characterization of oligosaccharides isolated from the pectic polysaccharide rhamnogalacturonan II. Carbohydr. Res. 146: 279-305 (1986) https://doi.org/10.1016/0008-6215(86)85047-9
  18. Min JG, Lee DS, Park JH, Heo MS, Kim TJ, Shim KB, Cho YJ. Characterization and purification of anti-complement polysaccharide from spirodela polyrhiza. J. Food Sci. Nutr. 9: 21-28 (2004)
  19. Munder M, Mallo M, Eichmann K, Modolell M. Murine macrophages secrete interferon γ upon combined stimulation with interleukin(IL)-12 and IL-18: A novel pathway of autocrine macrophage activation. J. Exp. Med. 187: 2103-2108 (1998) https://doi.org/10.1084/jem.187.12.2103
  20. Okuda T, Yoshioka Y, Ikekawa T, Chihara G, Nishioka K. Anticomplementary activity of antitumor polysaccharides. Nat. New Biol. 238: 59-60 (1972) https://doi.org/10.1038/newbio238059a0
  21. Park HR, Hwang DH, Hong HD, Shin KS. Antitumor and antimetastatic activities of pectic polysaccharides isolated from persimmon leaves mediated by enhanced natural killer cell activity J. Func. Foods. 37: 460-466 (2017) https://doi.org/10.1016/j.jff.2017.08.027
  22. Park JS, Park JD, Lee BC, Choi KJ, Ra SW, Chang KW. Effects of extracts from various parts of lycium chnense Mill. on the proliferation of mouse spleen cells. Korean J. Med. Crop Sci. 8: 291-296 (2000)
  23. Pepys MB. Role of complement in the induction of immunological responses. Transplant. Rev. 32: 93-120 (1976)
  24. Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhyay S. Interleukin-10 (IL-10) mediated suppression of IL-12 productionin RAW 264.7 cells also involves c-rel transcription factor. Immunology. 114: 313-321 (2005) https://doi.org/10.1111/j.1365-2567.2005.02107.x
  25. Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333 (2006) https://doi.org/10.1016/j.intimp.2005.10.005
  26. Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada SI, Nanno M. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin. Vaccine Immunol. 13: 997-1003 (2006) https://doi.org/10.1128/CVI.00076-06
  27. Shimura K, Ito H, Hibasami H. Screening of hostmediated antitumor polysaccharides by crossed immunoeletrophoresis using fresh human serum. Jpn. J. Phamacol. 33: 403-408 (1983) https://doi.org/10.1016/S0021-5198(19)52525-2
  28. Shin KS. Purification and chemical properties of complement system-activating polysaccharides from the leaf of Panax ginseng C.A. Meyer. J. Korean Soc. Food Sci. Nutr. 47: 528-535 (2018) https://doi.org/10.3746/jjkfn.2018.47.5.528
  29. Shin KS. Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas. Korean J. Food. Sci. Technol. 51: 336-342 (2019) https://doi.org/10.9721/KJFST.2019.51.4.336
  30. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, Van Dommelen SLH, Degil-Esposti MA, Hayakawa Y. Activation of NK cell cytotoxicity. Mol. Immunol. 42: 501-510 (2005) https://doi.org/10.1016/j.molimm.2004.07.034
  31. Stuart E, David H. Innate immunity. J. Allergy Clin. Immunol. 125: S24-S32 (2010) https://doi.org/10.1016/j.jaci.2009.07.016
  32. Takasugi M, Mickey MR, Terasaki PI. Reactivity of lymphocytes from normal person on cultured tumor cells. Cancer Res. 33: 2898-2902 (1973)
  33. Tanigawa K, Craig RA, Stoolman LM, Chang AE. Effects of tumor necrosis factor-α on the in vitro maturation of tumor-reactive effector T cells. J. Immunother. 23: 528-535 (2000) https://doi.org/10.1097/00002371-200009000-00003
  34. Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK). Cancer Treat. Rev. 11: 131-155 (1984)
  35. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin. Chim. Acta. 327: 123-128 (2003) https://doi.org/10.1016/S0009-8981(02)00343-1
  36. Whaley K. The complement system. pp. 1-35. In: Complement in Health and Disease. MTP Press, Lancaster, UK (1986)
  37. Xie JH, Jin ML, Morris GA, Zha XQ, Ghen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food. Sci. Nutr. 56: S60-S84 (2016)
  38. Yamada H, Kiyohara H, Takemoto N. Mitogenic and complement activating activities of the herbal components of juzentaihoto. Planta Med. 58: 166-170 (1992) https://doi.org/10.1055/s-2006-961421
  39. Yu XH, Liu Y, Wu XL, Liu LZ, Fu W, Song DD. Isolation, purification, characterization and immunostimulatoryactivity of polysaccharides derived from American ginseng. Carbohydr. Pol. 156: 9-18 (2017) https://doi.org/10.1016/j.carbpol.2016.08.092