DOI QR코드

DOI QR Code

Improvement of blood glucose homeostasis in mice fed with Capsosiphon fulvescens extract-added whole wheat cookie

매생이 추출물 첨가 통밀 쿠키의 마우스 혈당 항상성 개선 효과

  • Lim, Jae-Min (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Chun, Su-Hyun (Institute of Biomedical Science and Food Safety, Korea University) ;
  • Jeong, Yu-Jin (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 임재민 (고려대학교 일반대학원 생명공학과) ;
  • 전수현 (고려대학교 식품생의학안전연구소) ;
  • 정유진 (고려대학교 일반대학원 생명공학과) ;
  • 이광원 (고려대학교 일반대학원 생명공학과)
  • Received : 2021.03.22
  • Accepted : 2021.05.21
  • Published : 2021.06.30

Abstract

The present study aimed to investigate the effect of whole wheat cookie supplemented with Capsosiphon fulvescens (CF) extract on serum glucose homeostasis in C57BL/6 mice. This study examined whether the same effect was demonstrated for whole wheat cookie in comparison to previous research documenting the glucose-lowering effect of food products combined with CF extract. Mice were divided into three groups depending on the diet administered: normal cookie (NC), whole wheat cookie (WC), and WC blended with CF extract (WCFE). After 4 weeks of administering the experimental diet, the blood glucose level, serum insulin level, and homeostatic model assessment for insulin resistance index were found to be significantly lower in the WCFE group than in the NC and WC groups. These results suggest that whole wheat cookie containing CF extract is effective in preventing insulin resistance and maintaining blood glucose homeostasis.

본 연구는 일반 쿠키(NC), 통밀 쿠키(WC) 그리고 매생이 추출물이 첨가된 통밀 쿠키(WCFE)를 제조하고 4주 동안 쿠키로만 이루어진 식이를 마우스에게 제공한 뒤 혈당과 관련된 지표들의 변화를 관찰하였다. 4주 섭취 이후 NC를 섭취한 그룹과 비교하여 WC와 WCFE를 섭취한 그룹에서 단기간의 체중 증가의 감소효과를 보였으며, 매생이 추출물의 첨가는 간과 신장의 스트레스 증가에 영향이 없음을 확인할 수 있었다. 공복 혈당 수준은 WC 그룹과 WCFE 그룹에서 NC 그룹에 비해 유의적으로 감소하였다(p<0.001). 혈청 인슐린 농도는 WCFE 그룹에서 유의적인 차이를 보이며 감소하였고(p<0.05), 이를 바탕으로 인슐린 저항성 관련 지표인 HOMA-IR를 산출 시 WCFE 그룹에서 유의적인 차이를 보이며 감소함으로써(p<0.05) 매생이 추출물이 첨가되었을 때 인슐린 저항성을 개선한 것으로 판단된다. 또한, OGTT의 30분대 혈당치에서 NC 그룹 및 WC 그룹과 비교하여 WCFE 그룹에서 혈당 증가 폭이 감소하는 것을 확인할 수 있었고, WCFE 그룹에서 가장 낮은 AUC 면적 값을 나타냈다. OGTT 및 AUC 결과를 종합해볼 때 일반 쿠키와 통밀 쿠키에 비해 매생이 추출물의 첨가로 인해 내당능에 도움을 줄 수 있을 것으로 판단된다. 그러나 혈당 관련 유전자인 GLUT2와 GLUT4의 경우, 통밀에 의해 발현이 증가하는 경향은 관찰되었으나 매생이 추출물 첨가에 의한 효과는 관찰되지 않았다. 또한 IRS-1의 경우 WC 그룹에 비해 WCFE 그룹의 발현이 증가하였고 PI3K p85α 발현의 경우 WC 그룹에 비해 WCFE 그룹의 발현이 감소하는 경향을 보여, 매생이 추출물의 첨가가 혈당 관련 유전자의 발현에는 영향을 미치지 못하는 것으로 보인다. 따라서, 이러한 결과를 종합했을 때 WCFE 섭취 시, 혈당 관련 유전자 발현에는 영향을 미치지는 못하지만, 내당능 개선 효과를 가지며 인슐린 저항성 개선 효과의 가능성을 보여 혈당 항상성 개선에 기여할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 고려대학교 BK21 플러스 생명공학원 사업단의 지원 및 (주)주스앤그로서리(과제번호: Q2023071)의 지원을 받아 수행된 결과로 이에 감사드립니다.

References

  1. Adeva Andany MM, Perez Felpete N, Fernandez Fernandez C, Donapetry Garcia C, C PG. Liver glucose metabolism in humans. Biosci. Rep. 36: 1-15 (2016)
  2. Bae YJ. Relationship among practicing healthy diet and metabolic syndrome indicators in adults-from the Korea National Health and Nutrition Examination Survey, 2013~2014. J. Nutr. Health. 49: 459-470 (2016) https://doi.org/10.4163/jnh.2016.49.6.459
  3. Cho EK, Yoo SK, Choi YJ. Inhibitory effects of maesaengi (Capsosiphon fulvescens) extracts on angiotensin converting enzyme and α-glucosidase. J. Life Sci. 21: 811-818 (2011) https://doi.org/10.5352/JLS.2011.21.6.811
  4. Choe KJ, Kim WJ, Shin SY, Woo Y, Lee KH, Kim EJ, Shim MS, Kim JY. Association between change in body weight and insulin resistance in individuals at increased risk of diabetes. Korean J. Med. 89: 681-689 (2015) https://doi.org/10.3904/kjm.2015.89.6.681
  5. Choi JS, Lee SH, Park YS. Anti-diabetic effect of mulberry leaf extract fermented with Lactobacillus plantarum. Korean J. Food Sci. Technol. 52: 191-199 (2020) https://doi.org/10.9721/KJFST.2020.52.2.191
  6. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15: 318-368 (1992) https://doi.org/10.2337/diacare.15.3.318
  7. Grover J, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 81: 81-100 (2002) https://doi.org/10.1016/S0378-8741(02)00059-4
  8. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 87: 99-109 (2005) https://doi.org/10.1016/j.biochi.2004.10.019
  9. Guillausseau PJ, Meas T, Virally M, Laloi-Michelin M, Medeau V, Kevorkian JP. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 34: S43-S48 (2008) https://doi.org/10.1016/S1262-3636(08)73394-9
  10. Han AR, Kim SW, Chun SH, Nam MH, Hong CO, Kim BH, Kim TC, Lee KW. Effect of diet containing whole wheat bread with Capsosiphon fulvescens and Lindera obtusiloba ethanol extracts on plasma glucose and lipid levels in rats. Korean J. Food Sci. Technol. 48: 178-186 (2016) https://doi.org/10.9721/KJFST.2016.48.2.178
  11. Hong CO, Nam MH, Oh JS, Lee JW, Kim CT, Park KW, Lee DH, Lee KW. Pheophorbide a from Capsosiphon fulvescens inhibits advanced glycation end products mediated endothelial dysfunction. Planta Med. 82: 46-57 (2016) https://doi.org/10.1055/s-0035-1557829
  12. Hu WS, Lee SJ, Pyo JH, Kim SH, Sung NJ. Hypoglycemic and Hypolipidemic Effects of Jerusalem artichoke Composites in Streptozotocin induced Diabetic Rats. J Life Sci. 28: 671-680 (2018) https://doi.org/10.5352/JLS.2018.28.6.671
  13. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 14: 1483-1496 (2018) https://doi.org/10.7150/ijbs.27173
  14. Hwang EK, Amano H, Park CS. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Psychol. 20: 147-151 (2008)
  15. Im SS, Kim SY, Kim Hi, Ahn YH. Transcriptional regulation of glucose sensors in pancreatic β cells and liver. Curr. Diabetes. Rev. 2: 11-18 (2006) https://doi.org/10.2174/157339906775473581
  16. Jenkins D, Wolever T, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34: 362-366 (1981) https://doi.org/10.1093/ajcn/34.3.362
  17. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 18: 247-256 (2001) https://doi.org/10.1080/09687680110090456
  18. Jordan SD, Konner AC, Bruning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67: 3255-3273 (2010) https://doi.org/10.1007/s00018-010-0414-7
  19. Jung KJ, Jung CH, Pyeun JH, Choi YJ. Changes of food compopents in mesangi (Capsosiphon fulvecense), gashiparae (Enteromorpha prolifera), and cheonggak (Codium fragile) depending on harvest times. J. Korean Soc. Food Sci. Nutr. 34: 687-693 (2005) https://doi.org/10.3746/JKFN.2005.34.5.687
  20. Kim E, Vuksan V, Wong E. The realationship between viscosity of soluble dietary fiber and their hypoglycemic effects. J. Nutr. Health 29: 615-621 (1996)
  21. Kim HY, Lee IS, Kang JY, Kim GY. Quality characteristics of cookies with various levels of functional rice flour. Korean J. Food Sci. Technol. 34: 642-646 (2002)
  22. Kim MS, Park JD, Lee HY, Kum JS. Effect of rice flour prepared with enzyme treatment on quality characteristics of rice cookies. J. Korean Soc. Food Sci. Nutr. 42: 1439-1445 (2013) https://doi.org/10.3746/JKFN.2013.42.9.1439
  23. Kim SW, Han AR, Chun SH, Nam MH, Hong CO, Kim BH, Kim TC, Lee KW. Levels of plasma glucose and lipid in rats fed bread supplemented with natural extracts. Korean J. Food Sci. Technol. 48: 77-85 (2016) https://doi.org/10.9721/KJFST.2016.48.1.77
  24. Kwon MJ, Nam TJ. Effects of Mesangi (Capsosiphon fulvecens) powder on lipid metabolism in high cholesterol fed rats. J. Korean Soc. Food Sci. Nutr. 35: 530-535 (2006) https://doi.org/10.3746/JKFN.2006.35.5.530
  25. Lee SH, Choi SH, Kim HJ, Chung YS, Lee KW, Lee HC, Huh KB, Kim DJ. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J. Korean Med. Sci. 21: 695-700 (2006) https://doi.org/10.3346/jkms.2006.21.4.695
  26. Lee SH, Lynn EG, Kim Ja, Quon MJ. Protein kinase C-ζ phosphorylates insulin receptor substrate-1,-3, and-4 But Not-2: isoform specific determinants of specificity in insulin signaling. Endocrinology 149: 2451-2458 (2008) https://doi.org/10.1210/en.2007-1595
  27. Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B. Sucrosesweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am. J. Clin. Nutr. 95: 283-289 (2012) https://doi.org/10.3945/ajcn.111.022533
  28. Matthews DR, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419 (1985) https://doi.org/10.1007/BF00280883
  29. McKeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF. Wholegrain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 76: 390-398 (2002) https://doi.org/10.1093/ajcn/76.2.390
  30. Mussig K, Staiger H, Fiedler H, Moeschel K, Beck A, Kellerer M, Haring HU. Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1. J. Biol. Chem. 280: 32693-32699 (2005) https://doi.org/10.1074/jbc.M506549200
  31. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34: 121-138 (2013) https://doi.org/10.1016/j.mam.2012.07.001
  32. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7: 27 (2016) https://doi.org/10.4103/0976-0105.177703
  33. Nam MH, Koo YC, Hong CO, Yang SY, Kim SW, Jung HL, Lee H, Kim JY, Han AR, Son WR, Pyo MC, Lee KW. In vivo study of the renal protective effects of Capsosiphon fulvescens against streptozotocin-induced oxidative stress. Korean J. Food Sci. Technol. 46: 641-647 (2014) https://doi.org/10.9721/KJFST.2014.46.5.641
  34. Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E. Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care 28: 1757-1762 (2005) https://doi.org/10.2337/diacare.28.7.1757
  35. Park SY. Inhibitory Effect of Jeju Tea Extracts and Vanadate on Postprandial Hyperglycemia and Hypertension, and In Vitro Study. Korean J. Clin. Lab. Sci. 52: 398-407 (2020) https://doi.org/10.15324/kjcls.2020.52.4.398
  36. Penicaud L, Leloup C, Fioramonti X, Lorsignol A, Benani A. Brain glucose sensing: a subtle mechanism. Curr. Opin. Clin. Nutr. Metab. Care 9: 458-462 (2006) https://doi.org/10.1097/01.mco.0000232908.84483.e0
  37. Rao SS, Disraeli P, McGregor T. Impaired glucose tolerance and impaired fasting glucose. Am. Fam. Physician 69: 1961-1968 (2004)
  38. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, McHugh-Pemu K. Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil. Steril. 78: 479-486 (2002) https://doi.org/10.1016/S0015-0282(02)03303-4
  39. Rhee EJ. Prevalence and current management of cardiovascular risk factors in Korean adults based on fact sheets. Endocrinol. Metab. (Seoul) 35: 85-94 (2020) https://doi.org/10.3803/enm.2020.35.1.85
  40. Seki E, Yamamoto A, Fujiwara Y, Yamane T, Satsu H, Ohkubo I. Dipeptidyl Peptidase-IV Inhibitory Activity of KatsuobushiDerived Peptides in Caco-2 Cell Assay and Oral Glucose Tolerance Test in ICR Mice. J. Agric Food Chem. 68: 6355-6367 (2020) https://doi.org/10.1021/acs.jafc.0c01942
  41. Shi Z, Zhen S, Zimmet PZ, Zhou Y, Zhou Y, Magliano DJ, Taylor AW. Association of impaired fasting glucose, diabetes and dietary patterns with mortality: a 10-year follow-up cohort in Eastern China. Acta Diabetol. 53: 799-806 (2016) https://doi.org/10.1007/s00592-016-0875-8
  42. Sonksen P, Sonksen J. Insulin: understanding its action in health and disease. Br. J. Anaesth. 85: 69-79 (2000) https://doi.org/10.1093/bja/85.1.69
  43. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D, Matheson D, Skyler JS. Glucose and C-peptide changes in the perionset period of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 31: 2188-2192 (2008) https://doi.org/10.2337/dc08-0935
  44. Steer KA, Sochor M, McLean P. Renal hypertrophy in experimental diabetes: changes in pentose phosphate pathway activity. Diabetes 34: 485-490 (1985) https://doi.org/10.2337/diabetes.34.5.485
  45. Winzell MS, Ahren B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53: S215-S219 (2004) https://doi.org/10.2337/diabetes.53.suppl_3.S215
  46. Wu H, Flint AJ, Qi Q, Van Dam RM, Sampson LA, Rimm EB, Holmes MD, Willett WC, Hu FB, Sun Q. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern. Med. 175: 373-384 (2015) https://doi.org/10.1001/jamainternmed.2014.6283