DOI QR코드

DOI QR Code

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications

  • Hariftyani, Arisvia Sukma (Faculty of Medicine, Universitas Airlangga) ;
  • Kurniawati, Lady Aqnes (Faculty of Medicine, Universitas Airlangga) ;
  • Khaerunnisa, Siti (Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga) ;
  • Veterini, Anna Surgean (Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital) ;
  • Setiawati, Yuani (Department of Anatomy-Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga) ;
  • Awaluddin, Rizki (Department of Pharmacy. Faculty of Health Science, University of Darussalam Gontor)
  • Received : 2021.01.14
  • Accepted : 2021.04.25
  • Published : 2021.06.30

Abstract

Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.

Keywords

Acknowledgement

The authors would like to thank the Dean of Faculty of Medicine, Universitas Airlangga, who kindly support this in silico study.

References

  1. International Diabetes Federation. IDF DIABETES ATLAS vol. 8th Edition; Karuranga, S.; Fernandes, J. R.; Huang, Y.; Malanda, B. Ed; International Diabetes Federation; Belgium, 2017, pp 14-95.
  2. American Diabetes Association. Diabetes Care: Standards of Medical Care in Diabetes; Riddle, M. C. Ed; USA, 2019, pp S13-S28.
  3. Halim, M.; Halim, A. Diabetes Metab. Syndr. 2019, 13, 1165-1172. https://doi.org/10.1016/j.dsx.2019.01.040
  4. Brownlee, M. Diabetes 2005, 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  5. Dowarah, J.; Singh, V. P. Bioorg. Med. Chem. 2020, 28, 115263. https://doi.org/10.1016/j.bmc.2019.115263
  6. Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Molecules 2020, 25, 1987. https://doi.org/10.3390/molecules25081987
  7. Qian, S.; Zhang, M.; He, Y.; Wang, W.; Liu, S. Future Med. Chem. 2016, 8, 1239-1258. https://doi.org/10.4155/fmc-2016-0064
  8. Hussain, H.; Green, I. R.; Abbas, G.; Adekenov, S. M.; Hussain, W.; Ali, I. Expert Opin. Ther. Pat. 2019, 29, 689-702. https://doi.org/10.1080/13543776.2019.1655542
  9. Verma, M.; Gupta, S. J.; Chaudhary. A.; Garg, V. K. Bioorg. Chem. 2017, 70, 267-283. https://doi.org/10.1016/j.bioorg.2016.12.004
  10. Yan, L. J. Animal Model Exp. Med. 2018, 1, 7-13. https://doi.org/10.1002/ame2.12001
  11. Grewal, A. S.; Bhardwaj, S.; Pandita, D.; Lather, V.; Sekhon, B. S. Mini Rev. Med. Chem. 2016, 16, 120-162. https://doi.org/10.2174/1389557515666150909143737
  12. Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. K. Pharmacogn. Rev. 2011, 5, 82-95. https://doi.org/10.4103/0973-7847.79103
  13. Chaves, P. F. P.; Hocayen, P.A.S.; Dallazen, J. L.; de Paula Werner, M. F.; Iacomini, M.; Andreatini, R.; Cordeiro, L. M. C. Int. J. Biol. Macromol. 2020, 164, 1675-1682. https://doi.org/10.1016/j.ijbiomac.2020.08.039
  14. Ubessi, C.; Tedesco, S. B.; de Bona da Silva, C.; Baldoni, M.; Krysczun, D. K.; Heinzmann, B. M.; Rosa, I. A.; Mori, N. C. J. Ethnopharmacol. 2019, 239, 111907. https://doi.org/10.1016/j.jep.2019.111907
  15. Al-Dabbagh, B.; Elhaty, I. A.; Elhaw, M.; Murali, C.; Al-Mansoori, A.; Awad, B.; Amin, A. BMC Res. Notes 2019, 12, 1-8. https://doi.org/10.1186/s13104-018-3960-y
  16. Diaz, A.; Vargas-Perez, I.; Aguilar-Cruz, L.; Calva-Rodriguez, R.; Trevino, S.; Venegas, B.; Contreras-Mora, I. R. Rev. Bras. Farmacogn. 2014, 24, 419-424. https://doi.org/10.1016/j.bjp.2014.07.016
  17. Parlinska-Wojtan, M.; Kus-Liskiewicz, M.; Depciuch, J.; Sadik, O. Bioprocess Biosyst. Eng. 2016, 39, 1213-1223. https://doi.org/10.1007/s00449-016-1599-4
  18. Agatonovic-Kustrin, S.; Babazadeh-Ortakand, D.; Morton, D. W.; Yusof, A. P. J. Chromatogr. A. 2015, 1385, 103-110. https://doi.org/10.1016/j.chroma.2015.01.067
  19. Petronilho, S.; Maraschin, M.; Coimbra, M. A.; Rocha, S. M. Ind. Crops Prod. 2012, 40, 1-12. https://doi.org/10.1016/j.indcrop.2012.02.041
  20. Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Nutrition 2016, 32, 66-72. https://doi.org/10.1016/j.nut.2015.07.011
  21. Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A. A.; Nash, R. J. J. Agric. Food Chem. 2008, 56, 8206-8211. https://doi.org/10.1021/jf8014365
  22. Salazar-Gomez, A.; Ontiveros-Rodriguez, J. C.; Pablo-Perez, S. S.; Vargas-Diaz, M. E.; Garduno-Siciliano, L. S. Afr. J. Bot. 2020, 135, 240-251. https://doi.org/10.1016/j.sajb.2020.08.020
  23. Zhu, F.; Li, X. X.; Yang, S. Y.; Chen, Y. Z. Trends Pharmacol. Sci. 2018, 39, 229-231. https://doi.org/10.1016/j.tips.2017.12.002
  24. Discovery Studio. Discovery Studio Life Science Modeling and Simulations; Accelrys, 2008.
  25. Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 42717 https://doi.org/10.1038/srep42717
  26. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46. 3-26 https://doi.org/10.1016/S0169-409X(00)00129-0
  27. Khaerunnisa, S.; Suhartati, S.; Awaluddin, R. Penelitian In Silico untuk Pemula; Airlangga University Press: Indonesia, 2020, pp 67-89
  28. Kousaxidis, A.; Petrou, A.; Lavrentaki, V.; Fesatidou, M.; Nicolaou, I.; Geronikaki, A. Eur. J. Med. Chem. 2020, 207, 112742. https://doi.org/10.1016/j.ejmech.2020.112742
  29. Hajizadeh-Sharafabad, F.; Varshosaz, P.; Jafari-Vayghan, H.; Alizadeh, M.; Maleki, V. Complement. Ther. Med. 2020, 48, 102284. https://doi.org/10.1016/j.ctim.2019.102284
  30. Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M. European J. Med. Plants 2014, 4, 590-609. https://doi.org/10.9734/EJMP/2014/7764
  31. Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. Toxicol. Mech. Methods 2019, 29, 276-290. https://doi.org/10.1080/15376516.2018.1545815
  32. Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Food Nutr. Res. 2017, 61, 1364117. https://doi.org/10.1080/16546628.2017.1364117
  33. Reza, M. S.; Shuvo, M. S. R.; Hassan, M. M.; Basher, M. A.; Islam M. A.; Naznin, N. E.; Jafrin, S.; Ahmed, K. S.; Hossain, H.; Daula, A. F. M. S. U. Biomed. Pharmacother. 2020, 132, 110942. https://doi.org/10.1016/j.biopha.2020.110942
  34. Hannan, M. A.; Sohag, A. A. M.; Dash, R.; Haqu e, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytomedicine 2020, 69, 153201. https://doi.org/10.1016/j.phymed.2020.153201
  35. Wianowska, D.; Gil, M. Phytochem. Rev. 2019, 18, 273-302. https://doi.org/10.1007/s11101-018-9592-y
  36. Chen, L.; Teng, H.; Cao, H. Food Chem. Toxicol. 2019, 127, 182-187. https://doi.org/10.1016/j.fct.2019.03.038
  37. Du, X.; Li, Y.; Xia, Y. L.; Ai, S. M.; Liang, J.; Sang, P.; Ji, X. L.; Liu, S. Q. Int. J. Mol. Sci. 2016, 17, 144. https://doi.org/10.3390/ijms17020144
  38. Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A. K. PLoS ONE, 2010, 5, 1-10. https://doi.org/10.1371/journal.pone.0012029
  39. Talbot, E. P. A. Towards the synthesis of anthecularin and anthecotulides; Faculty of Physical Sciences, University of Oxford: United Kingdom, 2011, pp 1-8.
  40. Chaturvedi, D.; Dwivedi, P. K. In Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery; Brahmachari, G. Ed; Elsevier Inc; USA, 2017, pp 185-207.
  41. Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Food Chem. Toxicol. 2019, 125, 494-502. https://doi.org/10.1016/j.fct.2019.01.037
  42. Jaishree, V.; Narsimha, S. Biomed. Pharmacother. 2020, 130, 110561. https://doi.org/10.1016/j.biopha.2020.110561
  43. Eid, H. M.; Haddad, P. S. Curr. Med. Chem. 2017, 24, 355-364. https://doi.org/10.2174/0929867323666160909153707
  44. Ali, M. Y.; Jannat, S.; Rahman, M. M. Comput. Toxicol. 2020, 17, 100141
  45. Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Phytomedicine 2019, 59, 152774. https://doi.org/10.1016/j.phymed.2018.11.034
  46. Lin, Y.; Liu, P. G.; Liang, W. Q.; Hu, Y. J.; Xu, P.; Zhou, J.; Pu, J. B.; Zhang, H. J. Phytomedicine 2018, 41, 54-61. https://doi.org/10.1016/j.phymed.2018.02.002
  47. Lodhi, S.; Vadnere, G. P.; Patil, K. D.; Patil, T. P. J. Tradit. Complement. Med. 2020, 10, 60-69. https://doi.org/10.1016/j.jtcme.2019.02.004
  48. Addepalli, V.; Suryavanshi, S. V. Biomed. Pharmacother. 2018, 108, 1517-1523. https://doi.org/10.1016/j.biopha.2018.09.179
  49. Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Food Control 2019, 106, 106712. https://doi.org/10.1016/j.foodcont.2019.106712
  50. Bursal, E.; Taslimi, P.; Goren, A. C.; Gulcin, I. Biocatal. Agric. Biotechnol. 2020, 28, 101711. https://doi.org/10.1016/j.bcab.2020.101711
  51. Saeidnia, S.; Abdollahi, M.; Toxicol. Appl. Pharmacol. 2013, 273, 442-455. https://doi.org/10.1016/j.taap.2013.09.031