DOI QR코드

DOI QR Code

Facilitated Transport Membranes Based on PVA-g-PAA Graft Copolymer

PVA-g-PAA 가지형 공중합체 기반 촉진수송 분리막

  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Miso (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Bo Ryoung (C1 gas & Carbon Convergent Research Center, Chemical & Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (C1 gas & Carbon Convergent Research Center, Chemical & Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박민수 (연세대학교 화공생명공학과) ;
  • 강미소 (연세대학교 화공생명공학과) ;
  • 박보령 (한국화학연구원 C1 가스x탄소융합연구센터) ;
  • 김정훈 (한국화학연구원 C1 가스x탄소융합연구센터) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.05.21
  • Accepted : 2021.06.03
  • Published : 2021.06.30

Abstract

It is inevitable to generate incomplete combustion gases when mankind utilizes fossil fuels. From this point of view, gas separation process of combustion gas suggests the possibility of recycling CO gas. In this study, we fabricated a facilitated transport polymeric composite membrane for CO separation using AgBF4 and HBF4. The copolymer was synthesized via free-radical polymerization of poly(vinyl alcohol) (PVA) as a main chain and acrylic acid (AA) monomer as a side chain. The polymer synthesis was confirmed by FT-IR and the interactions of graft copolymer with AgBF4, and HBF4 were characterized by TEM. PVA-g-PAA graft copolymer membranes showed good channels for facilitated CO transport. In this perspective, we suggest the novel approach in CO separation membrane area via combination of grafting and facilitated transport.

화석 연료를 사용할 때, 불완전 연소는 필연적으로 발생하는 문제이다. 이러한 관점에서 연소 후 기체 분리는 불완전 연소 기체의 재활용 가능성을 시사한다. 이와 관련하여 본 연구에서는 일산화탄소 기체 분리용 촉진수송 고분자 분리막을 제조하였다. 이를 위해 poly(vinyl alcohol) (PVA) 주사슬 기반으로 acrylic acid (AA) 단량체를 자유 라디칼 중합법으로 PVA-g-PAA 공중합체를 제조하였다. 본 공중합체를 일산화탄소 활용에 적용하는 사례는 처음이며, 제조한 공중합체는 AgBF4 염과 HBF4를 혼합하여 기체 분리막에 적용하였다. 공중합체 합성 결과는 FT-IR을 통해 분석하였으며, 공중합체와 AgBF4, HBF4의 상호작용은 TEM를 통해 분석하였다. 염의 첨가를 통해 일산화탄소 기체의 촉진수송 채널을 형성하였으며 이를 통해 일산화탄소 분리막 분야에 촉진수송 및 그래프팅 방법이라는 새로운 접근법을 제시하였다.

Keywords

Acknowledgement

This work was supported by Next Generation Carbon Upcycling Project (NRF-2017M1A2A2043448) from the National Research Foundation (NRF) of South Korea funded by the Ministry of Science and ICT, Republic of Korea.

References

  1. J. R. McConnell, R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl, "20th-Century industrial black carbon emissions altered arctic climate forcing", Science, 317, 1381 (2007). https://doi.org/10.1126/science.1144856
  2. W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller, L. M. P. Bruhwiler, G. Petron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T. Randerson, P. O. Wennberg, M. C. Krol, and P. P. Tans, "An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker", Proc. Natl. Acad. Sci., 104, 18925 (2007). https://doi.org/10.1073/pnas.0708986104
  3. C. Rodenbeck, S. Houweling, M. Gloor, and M. Heimann, "CO2 flux history 1982~2001 inferred from atmospheric data using a global inversion of atmospheric transport", Atmos. Chem. Phys., 3, 1919 (2003). https://doi.org/10.5194/acp-3-1919-2003
  4. M. E. J. Stettler, S. Eastham, and S. R. H. Barrett, "Air quality and public health impacts of UK airports. Part I: Emissions", Atmos. Environ., 45, 5415 (2011). https://doi.org/10.1016/j.atmosenv.2011.07.012
  5. L. D. Prockop and R. I. Chichkova, "Carbon monoxide intoxication: An updated review", J. Neurol. Sci., 262, 122 (2007). https://doi.org/10.1016/j.jns.2007.06.037
  6. P. Brijesh and S. Sreedhara, "Exhaust emissions and its control methods in compression ignition engines: A review", Int. J. Automot. Technol., 14, 195 (2013). https://doi.org/10.1007/s12239-013-0022-2
  7. J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, and J. J. Scire Jr., "A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion", Int. J. Chem. Kinet., 39, 109 (2007). https://doi.org/10.1002/kin.20218
  8. M. H. Mohamed, S. K. Elsaidi, T. Pham, K. A. Forrest, H. T. Schaef, A. Hogan, L. Wojtas, W. Xu, B. Space, M. J. Zaworotko, and P. K. Thallapally, "Hybrid ultra-microporous materials for selective xenon adsorption and separation", Angew. Chem.-Int. Edit., 55, 8285 (2016). https://doi.org/10.1002/anie.201602287
  9. A. A. Kiss, "Distillation technology - still young and full of breakthrough opportunities", J. Chem. Technol. Biotechnol., 89, 479 (2014). https://doi.org/10.1002/jctb.4262
  10. M. C. Ferreira, A. J. A. Meirelles, and E. A. C. Batista, "Study of the fusel oil distillation process", Ind. Eng. Chem. Res., 52, 2336 (2013). https://doi.org/10.1021/ie300665z
  11. S. P. DiMartino, J. L. Glazer, C. D. Houston, and M. E. Schott, "Hydrogen/carbon monoxide separation with cellulose acetate membranes", Gas Sep. Purif., 2, 120 (1988). https://doi.org/10.1016/0950-4214(88)80027-6
  12. N. N. Dutta and G. S. Patil, "Developments in CO separation", Gas Sep. Purif., 9, 277 (1995). https://doi.org/10.1016/0950-4214(95)00011-Y
  13. D. Korelskiy, M. Grahn, P. Ye, M. Zhou, and J. Hedlund, "A study of CO2/CO separation by submicron b-oriented MFI membranes", RSC Adv., 6, 65475 (2016). https://doi.org/10.1039/C6RA14544B
  14. D. Aaron and C. Tsouris, "Separation of CO2 from flue gas: A review", Sep. Sci. Technol., 40, 321 (2005). https://doi.org/10.1081/SS-200042244
  15. S. Adhikari and S. Fernando, "Hydrogen membrane separation techniques", Ind. Eng. Chem. Res., 45, 875 (2006). https://doi.org/10.1021/ie050644l
  16. D. De Meis, M. Richetta, and E. Serra, "Microporous inorganic membranes for gas separation and purification", Interceram - Int. Ceram. Rev., 67, 16 (2018). https://doi.org/10.1007/s42411-018-0032-1
  17. W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi, "Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review", J. Appl. Polym. Sci., 137, 48968 (2020). https://doi.org/10.1002/app.48968
  18. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002). https://doi.org/10.1126/science.1069580
  19. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  20. J. H. Jo and W. S. Chi, "Review on membrane materials to improve plasticization resistance for gas separations", Membr. J., 30, 385 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.385
  21. W. Yave, A. Car, S. S. Funari, S. P. Nunes, and K.-V. Peinemann, "CO2-philic polymer membrane with extremely high separation performance", Macromolecules, 43, 326 (2010). https://doi.org/10.1021/ma901950u
  22. S. R. Hong, S. Y. O, and H. K. Lee, "Gas permeation characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes", Membr. J., 30, 409 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.409
  23. N. U. Kim, J.-H. Kim, B. R. Park, K. C. Kim, and J. H. Kim, "Solid-state facilitated transport membrane for CO/N2 separation based on PHMEP-coPAA comb-like copolymer: Experimental and molecular simulation study", J. Membr. Sci., 620, 118939 (2021). https://doi.org/10.1016/j.memsci.2020.118939
  24. J. Y. S. Lin, "Molecular sieves for gas separation", Science, 353, 121 (2016). https://doi.org/10.1126/science.aag2267
  25. N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture", J. Mater. Chem. A, 7, 14723 (2019). https://doi.org/10.1039/C9TA02962A
  26. J. P. Jung, C. H. Park, J. H. Lee, J. T. Park, J.-H. Kim, and J. H. Kim, "Facilitated olefin transport through membranes consisting of partially polarized silver nanoparticles and PEMA-g-PPG graft copolymer", J. Membr. Sci., 548, 149 (2018). https://doi.org/10.1016/j.memsci.2017.11.020
  27. J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, "Facilitated transport of ethylene across polymer membranes containing silver salt: Effect of HBF4 on the photoreduction of silver ions", J. Membr. Sci., 212, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00451-9
  28. H. J. Min, M. S. Park, M. Kang, and J. H. Kim, "Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors", Chem. Eng. J., 412, 127500 (2021). https://doi.org/10.1016/j.cej.2020.127500
  29. Y. J. Kim, S. J. Moon, and J. H. Kim, "Highly-permeable SBS/UiO-66 mixed matrix membranes for CO2/N2 separation", Membr. J., 30, 319 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.319
  30. S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.223