DOI QR코드

DOI QR Code

A Review on Recent Development and Applications of Dielectric Elastomers

  • Seo, Jin Sung (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Dohyeon (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Hwang, Sosan (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Shim, Sang Eun (Department of Chemistry and Chemical Engineering, Inha University)
  • Received : 2021.03.22
  • Accepted : 2021.04.14
  • Published : 2021.06.30

Abstract

This paper reviews recent developments and applications of dielectric elastomers (DEs) and suggests various techniques to improve DE properties. DEs as smart materials are a variety of electro-active polymers (EAPs) that convert electrical energy into mechanical energy and cause a large deformation when a voltage is applied. The dielectric constant, modulus, and dielectric loss of DEs determine the efficiency of deformation. Among these, the dielectric constant significantly affects their performance. Therefore, various recent approaches to improve the dielectric constant are reviewed, including the enhancement of polarization, introduction of microporous structures in the matrix, and introduction of ferroelectric fillers. Furthermore, the basic principles of DEs are examined, as well as their various applications such as actuators, generators, sensors, and artificial muscles.

Keywords

References

  1. A. O'Halloran, F. O'Malley, and P. McHugh, "A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges", J. Appl. Phys., 104, 071101 (2008). https://doi.org/10.1063/1.2981642
  2. Y. B. Cohen, K. J. Kim, H. R. Choi, and J. D. W. Madden, "Electroactive Polymer Materials", Smart. Mater. Struct., 16, (2007).
  3. L. Chang, Y. Liu, Q. Yang, L. Yu, J. Liu, Z. Zhu, P. Lu, Y. Wu, and Y. Hu, "Ionic Electroactive Polymers Used in Bionic Robots: A Review", J. Bionic. Eng., 15, 765 (2018). https://doi.org/10.1007/s42235-018-0065-1
  4. J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, and J. Wagner, "Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers", Angew. Chem. Int. Ed., 52, 9409 (2013). https://doi.org/10.1002/anie.201301918
  5. W. Kaal, and S. Herold, "Electroactive Polymer Actuators in Dynamic Applications". IEEE. ASME. Trans. Mechatron., 16, 24 (2011). https://doi.org/10.1109/TMECH.2010.2089529
  6. L. J. Romasanta, M. A. L. Manchado, and R. Verdejo, "Increasing the Performance of Dielectric Elastomer Actuators: A Review from the Materials Perspective", Prog. Polym. Sci., 51, 188 (2015). https://doi.org/10.1016/j.progpolymsci.2015.08.002
  7. Y. Zhao, L. J. Yin, S. L. Zhong, J. W. Zha, and Z. M. Dang, "Review of Dielectric Elastomers for Actuators, Generators and Sensors", IET. Nanodielectr., 3, 99 (2020). https://doi.org/10.1049/iet-nde.2019.0045
  8. U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, "Soft Robots Based on Dielectric Elastomer Actuators: A Review", Smart. Master. Struct., 28 (2019).
  9. F. Carpi, S. Bauer, and D. D. Rossi, "Stretching Dielectric Elastomer Performance", Science, 330, 1759 (2010). https://doi.org/10.1126/science.1194773
  10. H. Shigemune, S. Sugano, J. Nishitani, M. Yamauchi, N. Hosoya, S. Hashimoto, and S. Maeda, "Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush", Acuators., 51, 7 (2018).
  11. F. Carpi, C. Salaris, and D. D. Rossi, "Folded Dielectric Elastomer Actuators", Smart. Mater. Struct., 16, S300 (2007). https://doi.org/10.1088/0964-1726/16/2/S15
  12. M. W. M. Tan, G. Thangavel, and P. S. Lee, "Enhancing Dynamic Actuation Performance of Dielectric Elastomer Actuators by Tuning Viscoelastic Effects with Polar Cross-linking", NPG. Asia. Mater., 11, 62 (2019). https://doi.org/10.1038/s41427-019-0147-5
  13. S. Jiang, L. Jin, H. Hou, and L. Zhang, "Polymer-Based Multifunctional Nanocomposites and Their Applications", pp. 201-243, Higher Education Press, 2019.
  14. X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application", J. Adv. Dielectr., 3, 1330001 (2013). https://doi.org/10.1142/S2010135X13300016
  15. V. O. Sherman, A. K. Tagantesv, and N. Setter, "FerroelectricDielectric Tunable Composites", J. Appl. Phys., 99, 074104 (2006). https://doi.org/10.1063/1.2186004
  16. L. Liu, Y. Lei, Z. Zhang, J. Liu, S. Lv, and Z. Guo, "Fabrication of PDA@SiO2@rGO/PDMS Dielectric Elastomer Composites with good Electromechanical Properties", React. Funct. Polym., 154, 104656 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104656
  17. B. Kussmaul, S. Risse, G. Kofod, R. Wache, M. Wegener, D. N. Mccarthy, H. Kruger, and R. Gerhard, "Enhancement of Dielectric Permittivity and Electromechanical Response in Silicone Elastomers: Molecular Grafting of Organic Dipoles to the Macromolecular Network", Adv. Funct. Mater., 21, 4589 (2011). https://doi.org/10.1002/adfm.201100884
  18. M. R. Kashani, S. Javadi, and N. Gharavi, "Dielectric Properties of Silicone Rubber-Titanium Dioxide Composites Prepared by Dielectrophoretic Assembly of Filler Particles", Smart. Mater. Struct., 19, 035019 (2010). https://doi.org/10.1088/0964-1726/19/3/035019
  19. H. Sun, X. Liu, B. Yu, Z. Feng, N. Ning, G. H. Hu, M. Tian, and L. Zhang, "Simultaneously Improved Dielectric and Mechanical Properties of Silicone Elastomer by Designing a Dual Crosslinking Network", Polym. Chem., 10, 633 (2019). https://doi.org/10.1039/C8PY01763H
  20. M. P. Sarmad, E. Chehrazi, M. Noroozi, M. Raef, M. R. Kashani, and M. A. H. Baian, "Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites", ACS. Appl. Electron. Mater., 1, 198 (2019). https://doi.org/10.1021/acsaelm.8b00042
  21. L. Xiong, S. Zheng, Z. Xu, Z. Liu, W. Yang, and M. Yang, "Enhanced Performance of Porous Silicone-Based Dielectric Elastomeric Composites by Low Filler Content of Ag@SiO2 Core-Shell Nanoparticles", Nanocomposites, 5, 238 (2019).
  22. R. Manna and S. K. Srivastava, "Fabrication of Functionalized Graphene Filled Carboxylated Nitrile Rubber Nanocomposites as Flexible Dielectric Materials", Mater. Chem. Front., 1, 780 (2017). https://doi.org/10.1039/C6QM00025H
  23. S. Zhu, J. Guo, and J. Zhang, "Enhancement of Mechanical Strength Associated with Interfacial Tension Between Barium Titanate and Acrylonitrile-Butadiene Rubber with Different Acrylonitrile Contents by Surface Modification", J. Appl. Polym. Sci., 135, 45936 (2018). https://doi.org/10.1002/app.45936
  24. T. Chen, J. Qiu, K. Zhu, and J. Li, "Electro-Mechanical Performance of Polyurethane Dielectric Elastomer Flexible Micro-Actuator Composite Modified with Titanium DioxideGraphene Hybrid Fillers", Mater. Des., 90, 1069 (2016). https://doi.org/10.1016/j.matdes.2015.11.068
  25. S. Liu, M. Tian, B. Yan, L. Zhang, T. Nishi, and N. Ning, "High Performance Dielectric Elastomers by Partially Reduced Graphene Oxide and Disruption of Hydrogen Bonding of Polyurethanes", Polymer, 56, 375 (2015). https://doi.org/10.1016/j.polymer.2014.11.012
  26. X. Zhang, Y. Ma, C. Zhao, and W. Yang, "High Dielectric Constant and Low Dielectric Loss Hybrid Nanocomposites Fabricated with Ferroelectric Polymer Matrix and BaTiO3 Nanofibers Modified with Perfluoroalkylsilane", Appl. Surf. Sci., 305, 531 (2014). https://doi.org/10.1016/j.apsusc.2014.03.131
  27. J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre, and J. Bai, "High Dielectric Permittivity and Low Percolation Threshold in Polymer Composites Based on SiC-Carbon Nanotubes Micro/Nano Hybrid", Appl. Phys. Lett., 98, 032901 (2011). https://doi.org/10.1063/1.3544942
  28. L. L. Sun, B. Li, Y. Zhao, G. Mitchell, and W. H. Zhong, "Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution", Nanotechnology, 21, 305702 (2010). https://doi.org/10.1088/0957-4484/21/30/305702
  29. Prateek, R. Bhunia, S. Siddiqui, A. Grag, and R. K. Gupta, "Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO2-BaTiO3-TiO2 Nanofillers in PVDF-Based Thin-Film Polymer Nanocomposites", ACS. Appl. Mater. Interfaces, 11, 14329 (2019). https://doi.org/10.1021/acsami.9b01359
  30. R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, "Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion", Proceedings of SPIE, 4695, 126 (2002).
  31. M. Y. Jung, N. H. Chuc, J. W. Kim, I. M. Koo, K. M. Jung, Y. K. Lee, J. D. Nam, H. R. Choi, and J. C. Koo, "Fabrication and Characterization of Linear Motion Dielectric Elastomer Actuators", Proc. of SPIE, 6168, 616824-1 (2006).
  32. Q. Pei, M. Rosenthal, S. Stanford, H. Prahlad, and R. Pelrine, "Multiple-Degrees-of-Freedom Electroelastomer Roll Actuators", Smart. Mater. Struct., 13, N86 (2004). https://doi.org/10.1088/0964-1726/13/5/N03
  33. S. Shian, R. M. Diebold, and D. R. Clarke, "Tunable Lenses Using Transparent Dielectric Elastomer Actuators", Opt. Express, 21, 8669 (2013). https://doi.org/10.1364/OE.21.008669
  34. R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "Dielectric Elastomers: Stretching the Capabilities of Energy Harvesting", MRS. Bull., 37, 246 (2012). https://doi.org/10.1557/mrs.2012.41
  35. R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting", Proc. of. SPIE, 7976, 67 (2012).