DOI QR코드

DOI QR Code

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Park, Hee-Soo (School of Food Science and Biotechnology, Kyungpook National University)
  • 투고 : 2020.08.24
  • 심사 : 2020.10.13
  • 발행 : 2021.04.30

초록

Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant to HSP funded by the Korean government (NRF-2020R1C1C1004473).

참고문헌

  1. Bennett JW. An overview of the genus Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: molecular biology and genomics. Norfolk (UK): Caister Academic Press; 2010. p. 1-17.
  2. Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141-173. https://doi.org/10.1016/j.simyco.2014.07.004
  3. de Vries RP, Riley R, Wiebenga A, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18:28. https://doi.org/10.1186/s13059-017-1151-0
  4. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310-350. https://doi.org/10.1128/CMR.12.2.310
  5. Paulussen C, Hallsworth JE, Alvarez-Perez S, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2017;10:296-322. https://doi.org/10.1111/1751-7915.12367
  6. Latge JP, Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev. 2019; 33:e00140-18.
  7. Bastos RW, Valero C, Silva LP, et al. Functional characterization of clinical isolates of the opportunistic fungal pathogen Aspergillus nidulans. mSphere. 2020;5:e00153-20.
  8. Hedayati MT, Pasqualotto AC, Warn PA, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology (Reading). 2007;153:1677-1692. https://doi.org/10.1099/mic.0.2007/007641-0
  9. Perrone G, Susca A, Cozzi G, et al. Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol. 2007;59:53-66. https://doi.org/10.3114/sim.2007.59.07
  10. Perrone G, Gallo A. Aspergillus species and their associated mycotoxins. Methods Mol Biol. 2017;1542:33-49. https://doi.org/10.1007/978-1-4939-6707-0_3
  11. Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in analysis and detection of major mycotoxins in foods. Foods. 2020;9:518. https://doi.org/10.3390/foods9040518
  12. Kitamoto K. Cell biology of the Koji mold Aspergillus oryzae. Biosci Biotechnol Biochem. 2015;79:863-869. https://doi.org/10.1080/09168451.2015.1023249
  13. Park HS, Jun SC, Han KH, et al. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv Appl Microbiol. 2017;100:161-202. https://doi.org/10.1016/bs.aambs.2017.03.001
  14. Cairns TC, Nai C, Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol Biotechnol. 2018;5:13. https://doi.org/10.1186/s40694-018-0054-5
  15. Bourdichon F, Casaregola S, Farrokh C, et al. Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol. 2012;154:87-97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
  16. Lu H, Cao W, Liu X, et al. Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition. Sci Rep. 2018;8:14404. https://doi.org/10.1038/s41598-018-32341-1
  17. Ojeda-Lopez M, Chen W, Eagle CE, et al. Evolution of asexual and sexual reproduction in the aspergilli. Stud Mycol. 2018;91:37-59. https://doi.org/10.1016/j.simyco.2018.10.002
  18. Wang S, Chen H, Tang X, et al. Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol. 2017;101:8063-8075. https://doi.org/10.1007/s00253-017-8486-z
  19. Song R, Zhai Q, Sun L, et al. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol. 2019;103:6919-6932. https://doi.org/10.1007/s00253-019-10007-w
  20. Nodvig CS, Nielsen JB, Kogle ME, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One. 2015;10:e0133085. https://doi.org/10.1371/journal.pone.0133085
  21. Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189-195. https://doi.org/10.1046/j.1365-2672.2002.01516.x
  22. Balabanova LA, Shkryl YN, Slepchenko LV, et al. Development of host strains and vector system for an efficient genetic transformation of filamentous fungi. Plasmid. 2019;101:1-9. https://doi.org/10.1016/j.plasmid.2018.11.002
  23. van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, et al. Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol. 1997;15:256-263. https://doi.org/10.1016/S0167-7799(97)01020-2
  24. Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol. 2011;89:747-759. https://doi.org/10.1007/s00253-010-2937-0
  25. Xie H, Ma Q, Wei D, et al. Metabolic engineering of an industrial Aspergillus niger strain for itaconic acid production. 3 Biotech. 2020;10:113. https://doi.org/10.1007/s13205-020-2080-2
  26. Jin FJ, Maruyama J, Juvvadi PR, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett. 2004;239:79-85. https://doi.org/10.1016/j.femsle.2004.08.025
  27. He ZM, Price MS, Obrian GR, et al. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 2007;7:104. https://doi.org/10.1186/1471-2180-7-104
  28. Niu J, Arentshorst M, Seelinger F, et al. A set of isogenic auxotrophic strains for constructing multiple gene deletion mutants and parasexual crossings in Aspergillus niger. Arch Microbiol. 2016;198:861-868. https://doi.org/10.1007/s00203-016-1240-6
  29. Palmer LM, Cove DJ. Pyrimidine biosynthesis in Aspergillus nidulans: isolation and preliminary characterisation of auxotrophic mutants. Mol Gen Genet. 1975;138:243-255. https://doi.org/10.1007/BF00269351
  30. Xue T, Nguyen CK, Romans A, et al. Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. Arch Microbiol. 2004;182:346-353. https://doi.org/10.1007/s00203-004-0707-z
  31. Nguyen KT, Ho QN, Pham TH, et al. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol. 2016;32:204. https://doi.org/10.1007/s11274-016-2168-3
  32. da Silva Ferreira ME, Kress MR, Savoldi M, et al. The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5:207-211. https://doi.org/10.1128/EC.5.1.207-211.2006
  33. Nayak T, Szewczyk E, Oakley CE, et al. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics. 2006;172:1557-1566. https://doi.org/10.1534/genetics.105.052563
  34. Takahashi T, Masuda T, Koyama Y. Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics. 2006;275:460-470. https://doi.org/10.1007/s00438-006-0104-1
  35. Meyer V, Arentshorst M, El-Ghezal A, et al. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol. 2007;128:770-775. https://doi.org/10.1016/j.jbiotec.2006.12.021
  36. Chang PK, Scharfenstein LL, Wei Q, et al. Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. J Microbiol Methods. 2010;81:240-246. https://doi.org/10.1016/j.mimet.2010.03.010
  37. He B, Tu Y, Jiang C, et al. Functional genomics of Aspergillus oryzae: strategies and progress. Microorganisms. 2019;7:103. https://doi.org/10.3390/microorganisms7040103
  38. Gravelat FN, Askew DS, Sheppard DC. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods Mol Biol. 2012;845:119-130. https://doi.org/10.1007/978-1-61779-539-8_8
  39. Punt PJ, Oliver RP, Dingemanse MA, et al. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene. 1987;56:117-124. https://doi.org/10.1016/0378-1119(87)90164-8
  40. Ventura L, Ramon D. Transformation of Aspergillus terreus with the hygromycin B resistance marker from Escherichia coli. FEMS Microbiol Lett. 1991;66:189-193. https://doi.org/10.1111/j.1574-6968.1991.tb04863.x
  41. Suzuki S, Tada S, Fukuoka M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun. 2009;383:42-47. https://doi.org/10.1016/j.bbrc.2009.03.108
  42. Pronk JT. Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol. 2002;68:2095-2100. https://doi.org/10.1128/AEM.68.5.2095-2100.2002
  43. Nguyen KT, Ho QN, Do L, et al. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J Microbiol Biotechnol. 2017;33:107. https://doi.org/10.1007/s11274-017-2275-9
  44. Oakley BR, Rinehart JE, Mitchell BL, et al. Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61:385-399. https://doi.org/10.1016/0378-1119(87)90201-0
  45. Nielsen ML, Albertsen L, Lettier G, et al. Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genet Biol. 2006;43:54-64. https://doi.org/10.1016/j.fgb.2005.09.005
  46. Maruyama J, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DeltaligD) in Aspergillus oryzae. Biotechnol Lett. 2008;30:1811-1817. https://doi.org/10.1007/s10529-008-9763-9
  47. Tani S, Tsuji A, Kunitake E, et al. Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express. 2013;3:4. https://doi.org/10.1186/2191-0855-3-4
  48. Dohn JW Jr, Grubbs AW, Oakley CE, et al. New multi-marker strains and complementing genes for Aspergillus nidulans molecular biology. Fungal Genet Biol. 2018;111:1-6. https://doi.org/10.1016/j.fgb.2018.01.003
  49. Li D, Tang Y, Lin J, et al. Methods for genetic transformation of filamentous fungi. Microb Cell Fact. 2017;16:168. https://doi.org/10.1186/s12934-017-0785-7
  50. Herzog RW, Daniell H, Singh NK, et al. A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol. 1996;45:333-337. https://doi.org/10.1007/s002530050692
  51. Meyer V, Mueller D, Strowig T, et al. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet. 2003;43:371-377. https://doi.org/10.1007/s00294-003-0406-3
  52. Hutchison HT, Hartwell LH. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967;94:1697-1705. https://doi.org/10.1128/jb.94.5.1697-1705.1967
  53. Anne J, Eyssen H, Somer PD. Formation and regeneration of Penicillium chrysogenum protoplasts. Arch Microbiol. 1974;98:159-166. https://doi.org/10.1007/BF00425278
  54. Tilburn J, Scazzocchio C, Taylor GG, et al. Transformation by integration in Aspergillus nidulans. Gene. 1983;26:205-221. https://doi.org/10.1016/0378-1119(83)90191-9
  55. Szewczyk E, Nayak T, Oakley CE, et al. Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc. 2006;1:3111-3120. https://doi.org/10.1038/nprot.2006.405
  56. Peberdy JF. 1995. Fungal protoplasts. In: Kuck U, editor. Genetics and biotechnology. The mycota (a comprehensive treatise on fungi as experimental systems for basic and applied research). Berlin (Germany): Springer. p. 49-60.
  57. Zhao C, Fraczek MG, Dineen L, et al. High-throughput gene replacement in Aspergillus fumigatus. Curr Protoc Microbiol. 2019;54:e88.
  58. Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev. 2003;67:16-37. https://doi.org/10.1128/MMBR.67.1.16-37.2003
  59. de Groot MJ, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998;16:839-842. https://doi.org/10.1038/nbt0998-839
  60. Gouka RJ, Gerk C, Hooykaas PJ, et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol. 1999;17:598-601. https://doi.org/10.1038/9915
  61. Park S-M. Improved transformation of the filamentous fungus Aspergillus niger using Agrobacterium tumefaciens. Mycobiology. 2001;29:132-134. https://doi.org/10.1080/12298093.2001.12015774
  62. Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol. 2005;71:1798-1802. https://doi.org/10.1128/AEM.71.4.1798-1802.2005
  63. Michielse CB, Hooykaas PJ, van den Hondel CA, et al. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc. 2008;3:1671-1678. https://doi.org/10.1038/nprot.2008.154
  64. Kunitake E, Tani S, Sumitani J, et al. Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis. AMB Express. 2011;1:46. https://doi.org/10.1186/2191-0855-1-46
  65. Li M, Zhou L, Liu M, et al. Construction of an engineering strain producing high yields of a-transglucosidase via Agrobacterium tumefaciens-mediated transformation of Asperillus niger. Biosci Biotechnol Biochem. 2013;77:1860-1866. https://doi.org/10.1271/bbb.130281
  66. Kalleda N, Naorem A, Manchikatla RV. Targeting fungal genes by diced siRNAs: a rapid tool to decipher gene function in Aspergillus nidulans. PLoS One. 2013;8:e75443. https://doi.org/10.1371/journal.pone.0075443
  67. Mora-Lugo R, Zimmermann J, Rizk AM, et al. Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach. BMC Microbiol. 2014;14:247. https://doi.org/10.1186/s12866-014-0247-x
  68. Wang D, He D, Li G, et al. An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus. J Microbiol Methods. 2014;98:114-118. https://doi.org/10.1016/j.mimet.2014.01.007
  69. Fan Z, Yu H, Guo Q, et al. Identification and characterization of an anti-oxidative stress-associated mutant of Aspergillus fumigatus transformed by Agrobacterium tumefaciens. Mol Med Rep. 2016;13:2367-2376. https://doi.org/10.3892/mmr.2016.4839
  70. Weyda I, Yang L, Vang J, et al. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods. 2017;135:26-34. https://doi.org/10.1016/j.mimet.2017.01.015
  71. Han G, Shao Q, Li C, et al. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus. J Microbiol. 2018;56:356-364. https://doi.org/10.1007/s12275-018-7349-3
  72. Min T, Xiong L, Liang Y, et al. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol. 2019;35:109. https://doi.org/10.1007/s11274-019-2687-9
  73. Sun Y, Niu Y, He B, et al. A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042. J Microbiol Biotechnol. 2019;29:230-234. https://doi.org/10.4014/jmb.1811.11027
  74. Setoguchi S, Mizutani O, Yamada O, et al. Effect of pepA deletion and overexpression in Aspergillus luchuensis on sweet potato shochu brewing. J Biosci Bioeng. 2019;128:456-462. https://doi.org/10.1016/j.jbiosc.2019.03.019
  75. Zhu SY, Xu Y, Yu XW. Improved homologous expression of the acidic lipase from Aspergillus niger. J Microbiol Biotechnol. 2020;30:196-205. https://doi.org/10.4014/jmb.1906.06028
  76. Chakraborty BN, Kapoor M. Transformation of filamentous fungi by electroporation. Nucleic Acids Res. 1990;18:6737. https://doi.org/10.1093/nar/18.22.6737
  77. Richey MG, Marek ET, Schardl CL, et al. Transformation of filamentous fungi with plasmid DNA by electroporation. Phytopathology. 1989;79:844-847. https://doi.org/10.1094/Phyto-79-844
  78. Chakraborty BN, Patterson NA, Kapoor M. An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol. 1991;37:858-863. https://doi.org/10.1139/m91-147
  79. Ozeki K, Kyoya F, Hizume K, et al. Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem. 1994;58:2224-2227. https://doi.org/10.1271/bbb.58.2224
  80. Sanchez O, Aguirre J. Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia. Fungal Genet Newsl. 1996;43: 48-51.
  81. Brown JS, Aufauvre-Brown A, Holden DW. Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet. 1998;259:327-335. https://doi.org/10.1007/s004380050819
  82. Weidner G, d'Enfert C, Koch A, et al. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'-monophosphate decarboxylase. Curr Genet. 1998;33:378-385. https://doi.org/10.1007/s002940050350
  83. Firon A, Beauvais A, Latge JP, et al. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics. 2002;161:1077-1087. https://doi.org/10.1093/genetics/161.3.1077
  84. Firon A, Villalba F, Beffa R, et al. Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryot Cell. 2003;2:247-255. https://doi.org/10.1128/EC.2.2.247-255.2003
  85. Kuck U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 2010;86:51-62. https://doi.org/10.1007/s00253-009-2416-7
  86. Sheppard DC, Doedt T, Chiang LY, et al. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol Biol Cell. 2005;16:5866-5879. https://doi.org/10.1091/mbc.e05-07-0617
  87. Nielsen ML, de Jongh WA, Meijer SL, et al. Transient marker system for iterative gene targeting of a prototrophic fungus. Appl Environ Microbiol. 2007;73:7240-7245. https://doi.org/10.1128/AEM.01839-07
  88. Nielsen JB, Nielsen ML, Mortensen UH. Transient disruption of non-homologous endjoining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol. 2008;45:165-170. https://doi.org/10.1016/j.fgb.2007.07.003
  89. Goswami RS. Targeted gene replacement in fungi using a split-marker approach. Methods Mol Biol. 2012;835:255-269. https://doi.org/10.1007/978-1-61779-501-5_16
  90. Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  91. Gaj T, Sirk SJ, Shui SL, et al. Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol. 2016;8:a023754. https://doi.org/10.1101/cshperspect.a023754
  92. Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54:234-244. https://doi.org/10.1016/j.molcel.2014.03.011
  93. Rath D, Amlinger L, Rath A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119-128. https://doi.org/10.1016/j.biochi.2015.03.025
  94. Fuller KK, Chen S, Loros JJ, et al. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell. 2015;14:1073-1080. https://doi.org/10.1128/EC.00107-15
  95. Zhang C, Meng X, Wei X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol. 2016;86:47-57. https://doi.org/10.1016/j.fgb.2015.12.007
  96. Katayama T, Tanaka Y, Okabe T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett. 2016;38:637-642. https://doi.org/10.1007/s10529-015-2015-x
  97. Al Abdallah Q, Ge W, Fortwendel JR. A simple and universal system for gene manipulation in Aspergillus fumigatus: in vitro-assembled Cas9-guide RNA ribonucleoproteins coupled with microhomology repair templates. mSphere. 2017;2:e00446-17.
  98. Weber J, Valiante V, Nodvig CS, et al. Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol. 2017;6:62-68. https://doi.org/10.1021/acssynbio.6b00203
  99. Nakamura H, Katayama T, Okabe T, et al. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. J Gen Appl Microbiol. 2017;63:172-178. https://doi.org/10.2323/jgam.2016.10.002
  100. Nodvig CS, Hoof JB, Kogle ME, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol. 2018;115:78-89. https://doi.org/10.1016/j.fgb.2018.01.004
  101. Matsuda Y, Bai T, Phippen CBW, et al. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nat Commun. 2018;9:2587. https://doi.org/10.1038/s41467-018-04983-2
  102. Zheng X, Zheng P, Zhang K, et al. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol. 2019;8:1568-1574. https://doi.org/10.1021/acssynbio.7b00456
  103. Leynaud-Kieffer LMC, Curran SC, Kim I, et al. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PLoS One. 2019;14:e0210243. https://doi.org/10.1371/journal.pone.0210243
  104. Kadooka C, Yamaguchi M, Okutsu K, et al. A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem. 2020;84:2179-2183. https://doi.org/10.1080/09168451.2020.1792761

피인용 문헌

  1. Inducible Selectable Marker Genes to Improve Aspergillus fumigatus Genetic Manipulation vol.7, pp.7, 2021, https://doi.org/10.3390/jof7070506