DOI QR코드

DOI QR Code

Monosodium glutamate as a draw solute for sewage thickening by forward osmosis-nanofiltration

  • Yang, Seungheon (Water Cycle Research Center, Korea Institute of Science and Technology) ;
  • Yun, Taekguen (Water Cycle Research Center, Korea Institute of Science and Technology) ;
  • Kwon, Soon Bum (Water Cycle Research Center, Korea Institute of Science and Technology) ;
  • Cho, Kyungjin (Water Cycle Research Center, Korea Institute of Science and Technology) ;
  • Jeong, Seongpil (Water Cycle Research Center, Korea Institute of Science and Technology) ;
  • Hong, Seungkwan (Advanced Environmental Science, Energy Environment Policy and Technology, KU-KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Lee, Seockheon (Water Cycle Research Center, Korea Institute of Science and Technology)
  • 투고 : 2020.01.11
  • 심사 : 2021.05.30
  • 발행 : 2021.07.25

초록

Monosodium glutamate (MSG) was evaluated as a draw solute (DS) of forward osmosis-nanofiltration (FO-NF) process for sewage thickening. Water flux (Jw) and reverse draw solute flux (Js) through FO membrane with MSG were compared to those with NaCl as the reference DS. In addition, the influence of MSG to anaerobic digestion of concentrated sewage for methane gas production was investigated. The Js/Jw for MSG was 0.0015mol/L at 1M of initial concentration with a CTA(HTI) membrane, which was 6 % of that for NaCl, while the water flux (Jw) for MSG (ca. 10 L/m2h) was comparable to that for NaCl in FO processes. MSG recovered up to 98% by NF process, which changed with applied membrane and MSG concentration. The collected primary effluent from the full-scale wastewater treatment plant was thickened up to nine times in terms of volumetric concentration factor. The physical membrane flushing by a water could effectively recover the flux. The inhibitory effects of MSG on anaerobic methane production could be negligible and the gas production potential increased.

키워드

과제정보

This research was financially supported by the Korea Institute of Science and Technology (Project Codes: 2E26251, 2E29660). This study was also supported by the KU-KIST Graduate School Project.

참고문헌

  1. Achilli, A., Cath, T.Y. and Childress, A.E. (2009), "Power generation with pressure retarded osmosis: An experimental and theoretical investigation", J. Membr. Sci., 343(1), 42-52. https://doi.org/10.1016/j.memsci.2009.07.006.
  2. Achilli, A., Cath, T.Y. and Childress, A.E. (2010), "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364(1), 233-241. https://doi.org/10.1016/j.memsci.2010.08.010.
  3. Ansari, A.J., Hai, F.I., Guo, W., Ngo, H.H., Price, W.E. and Nghiem, L.D. (2015), "Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater", Bioresource Technol., 191, 30-36. https://doi.org/10.1016/j.biortech.2015.04.119.
  4. Batstone, D.J., Hulsen, T., Mehta, C.M. and Keller, J. (2015), "Platforms for energy and nutrient recovery from domestic wastewater: A review", Chemosphere, 140, 2-11. https://doi.org/10.1016/j.chemosphere.2014.10.021.
  5. Bowden, K.S., Achilli, A. and Childress, A.E. (2012), "Organic ionic salt draw solutions for osmotic membrane bioreactors", Bioresource Technol., 122, 207-216. https://doi.org/10.1016/j.biortech.2012.06.026.
  6. Cath, T.Y., Childress, A.E. and Elimelech, M. (2006), "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281(1-2), 70-87. https://doi.org/10.1016/j.memsci.2006.05.048.
  7. Chen, L., Gu, Y., Cao, C., Zhang, J., Ng, J.W. and Tang, C. (2014), "Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment", Water Res., 50, 114-123. https://doi.org/10.1016/j.watres.2013.12.009.
  8. Chen, Y., Cheng, J.J. and Creamer, K.S. (2008), "Inhibition of anaerobic digestion process: A review", Bioresource Technol., 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057.
  9. D'Haese, A.K.H., Motsa, M.M., Meeren, P.V.D. and Verliefde, A.R.D. (2017), "A refined draw solute flux model in forward osmosis: Theoretical considerations and experimental validation", J. Membr. Sci., 522, 316-331. https://doi.org/10.1016/j.memsci.2016.08.053.
  10. Gartiser, S., Urich, E., Alexy, R. and Kummerer, K. (2007), "Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes", Chemosphere, 66(10), 1839-1848. https://doi.org/10.1016/j.chemosphere.2006.08.040.
  11. Ge, Q., Su, J., Amy, G.L. and Chung, T.S. (2012), "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46(4), 1318-1326. https://doi.org/10.1016/j.watres.2011.12.043.
  12. Ge, Q.C., Ling, M.M. and Chung, T.S. (2013), "Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future", J. Membr. Sci., 442, 225-237. https://doi.org/10.1016/j.memsci.2013.03.046.
  13. Ghadiri, L., Bozorg, A. and Shakeri, A. (2019), "Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter", Membr. Water Treat., 10(6), 417-429. https://doi.org/10.12989/mwt.2019.10.6.417.
  14. Hau, N.T., Chen, S.S., Nguyen, N.C., Huang, K.Z., Ngo, H.H. and Guo, W. (2014), "Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge", J. Membr. Sci., 455, 305-311. https://doi.org/10.1016/j.memsci.2013.12.068.
  15. Holloway, R.W., Childress, A.E., Dennett, K.E. and Cath, T.Y. (2007), "Forward osmosis for concentration of anaerobic digester centrate", Water Res., 41(17), 4005-4014. https://doi.org/10.1016/j.watres.2007.05.054.
  16. ISO (2003), "Water quality-Determination of inhibition of gas production of anaerobic bacteria. Part 1: General test", ISO 13641-1:2003.
  17. Jiang, S.K., Zhang, G.M., Yan, L. and Wu, Y. (2018), "Treatment of natural rubber wastewater by membrane technologies for water reuse", Membr. Water Treat, 9(1), 17-21. https://doi.org/10.12989/mwt.2018.9.1.017.
  18. Kim, B., Gwak, G. and Hong, S. (2017), "Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S)," Desalination, 422, 5-16. https://doi.org/10.1016/j.desal.2017.08.006.
  19. Kim, D.I., Kim, J. and Hong, S. (2016), "Changing membrane orientation in pressure retarded osmosis for sustainable power generation with low fouling", Desalination, 389, 197-206. https://doi.org/10.1016/j.desal.2016.01.008.
  20. Kravath, R.E. and Davis, J.A. (1975), "Desalination of sea-water by direct osmosis", Desalination, 16(2), 151-155. https://doi.org/10.1016/S0011-9164(00)82089-5.
  21. Kugelman, I.J. and McCarty, P.L. (1965), "Cation toxicity and stimulation in anaerobic waste treatment", J. Water Pollut. Control. Fed., 97-116.
  22. Kumar, R. and Pal, P. (2015), "A novel forward osmosis-nano filtration integrated system for coke-oven wastewater reclamation", Chem. Eng. Res. Des., 100, 542-553. https://doi.org/10.1016/j.cherd.2015.05.012.
  23. Kwon, S.B., Lee, J.S., Kwon, S.J., Yun, S.T., Lee, S. and Lee, J.H. (2015) "Molecular layer-by-layer assembled forward osmosis membranes", J. Membr. Sci. 488, 111-120. https://doi.org/10.1016/j.memsci.2015.04.015.
  24. Lay, J.J., Li, Y.Y. and Noike, T. (1998), "Mathematical model for methane production from landfill bioreactor", J. Environ. Eng., 124(8), 730-736. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(730)
  25. Lee, S., Quyet, N., Lee, E., Kim, S., Lee, S., Jung, Y.D., Choi, S.H. and Cho, J. (2008), "Efficient removals of tris(2-chloroethyl) phosphate (TCEP) and perchlorate using NF membrane filtrations", Desalination, 221(1), 234-237. https://doi.org/10.1016/j.desal.2007.02.054.
  26. Li, D., Zhang, X., Yao, J., Simon, G.P. and Wang, H. (2011), "Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination", Chem. Commun., 47(6), 1710-1712. https://doi.org/10.1039/C0CC04701E.
  27. Ling, M.M. and Chung, T.S. (2011), "Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes", J. Membr. Sci., 372(1), 201-209. https://doi.org/10.1016/j.memsci.2011.02.003.
  28. Liu, C., Li, H., Zhang, Y., Si, D. and Chen, Q. (2016), "Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge", Bioresource Technol., 216, 87-94. https://doi.org/10.1016/j.biortech.2016.05.048.
  29. Lutchmiah, K., Lauber, L., Roest, K., Harmsen, D.J.H., Post, J.W., Rietveld, L.C., Van Lier, J.B. and Cornelissen, E.R. (2014), "Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation", J. Membr. Sci., 460, 82-90. https://doi.org/10.1016/j.memsci.2014.02.032.
  30. Martin Orue, C., Bouhallab, S. and Garem, A. (1998), "Nanofiltration of amino acid and peptide solutions: mechanisms of separation", J. Membr. Sci., 142(2), 225-233. https://doi.org/10.1016/S0376-7388(97)00325-6.
  31. McCutcheon, J.R. and Elimelech, M. (2006), "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284(1), 237-247. https://doi.org/10.1016/j.memsci.2006.07.049.
  32. McCutcheon, J.R., McGinnis, R.L. and Elimelech, M. (2006), "Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance", J. Membr. Sci., 278(1-2), 114-123. https://doi.org/10.1016/j.memsci.2005.10.048.
  33. Mi, B. and Elimelech, M. (2010), "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", J. Membr. Sci., 348(1), 337-345. https://doi.org/10.1016/j.memsci.2009.11.021.
  34. Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L. and Hilal, N. (2015), "Nanofiltration membranes review: Recent advances and future prospects", Desalination, 356, 226-254. https://doi.org/10.1016/j.desal.2014.10.043.
  35. Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y. and Mccarty, P.L. (1979), "Bioassay for monitoring biochemical methane potential and anaerobic toxicity", Water Res., 13(6), 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  36. Patel, G.B. and Roth, L.A. (1977), "Effect of sodium chloride on growth and methane production of methanogens", Can. J. Microbiol., 23(7), 893-897. https://doi.org/10.1139/m77-131.
  37. Phillip, W.A., Yong, J.S. and Elimelech, M. (2010), "Reverse draw solute permeation in forward osmosis: Modeling and experiments", Environ. Sci. Technol., 44(13), 5170-5176. https://doi.org/10.1021/es100901n.
  38. Ribeiro, A.C.F., Rodrigo, M.M., Barros, M.C.F., Verissimo, L.M.P., Romero, C., Valente, A.J.M. and Esteso, M.A. (2014), "Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T=298.15K", J. Chem. Thermodyn., 74, 133-137. https://doi.org/10.1016/j.jct.2014.01.017.
  39. Tiraferri, A., Yip, N.Y., Straub, A.P., Castrillon, S.R.V. and Elimelech, M. (2013), "A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes", J. Membr. Sci., 444, 523-538. https://doi.org/10.1016/j.memsci.2013.05.023.
  40. Linares, R.V., Li, Z., Abu Ghdaib, M., Wei, C.H., Amy, G. and Vrouwenvelder, J.S. (2013), "Water harvesting from municipal wastewater via osmotic gradient: An evaluation of process performance", J. Membr. Sci., 447, 50-56. https://doi.org/10.1016/j.memsci.2013.07.018.
  41. Xue, W., Tobino, T., Nakajima, F. and Yamamoto, K. (2015), "Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: Effect of membrane properties and feed solution chemistry", Water Res., 69, 120-130. https://doi.org/10.1016/j.watres.2014.11.007.
  42. Yaroshchuk A., Bruening M.L. and Zholkovskiy E. (2019), "Modelling nanofiltration of electrolyte solutions", Adv. Colloid Interfac., 268, 39-63. https://doi.org/10.1016/j.cis.2019.03.004.
  43. Yong, J.S., Phillip, W.A. and Elimelech, M. (2012), "Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes", J. Membr. Sci., 392, 9-17. https://doi.org/10.1016/j.memsci.2011.11.020.
  44. Zhao, S. and Zou, L. (2011), "Relating solution physicochemical properties to internal concentration polarization in forward osmosis", J. Membr. Sci., 379(1), 459-467. https://doi.org/10.1016/j.memsci.2011.06.021.
  45. Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Van't Riet, K. (1990), "Modeling of the bacterial growth curve", Appl. Environ. Microbiol., 56(6), 1875-1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990.