DOI QR코드

DOI QR Code

Electrochemical corrosion study of helium ions implanted Zircaloy-4 in chloride media

  • Rafique, Mohsin (Centre for Advanced Studies in Physics, GC University) ;
  • Khan, Atika (Centre for Advanced Studies in Physics, GC University) ;
  • Afzal, Naveed (Centre for Advanced Studies in Physics, GC University) ;
  • Farooq, Ameeq (Corrosion Control Research Cell, Department of Metallurgy and Materials Engineering, CEET, University of the Punjab) ;
  • Imran, M. (Department of Physics, GC University)
  • Received : 2020.02.06
  • Accepted : 2020.08.03
  • Published : 2021.03.25

Abstract

In this work, an attempt is made to improve the electrochemical corrosion resistance of Zircaloy-4 by helium ions implantation. For this purpose, the Zircaloy-4 was implanted with 300 keV helium ions of fluences 1 × 1013, 1 × 1015, and 1 × 1016 ions-cm-2 by using Pelletron Accelerator. Electrochemical tests of pristine and ion-implanted samples were performed in NaCl solution and their potentiodynamic polarization curves were obtained. The results showed enhancement of the corrosion resistance of Zircaloy-4 after helium ions implantation. The corrosion rate and current density of the material were significantly reduced by the helium implantation. The decrease in corrosion parameters was attributed to helium ions diffusion inside Zircaloy-4 that reduced the electrons flow from the samples.

Keywords

References

  1. B. Cox, J. Nucl. Mater. 336 (2005) 331-368. https://doi.org/10.1016/j.jnucmat.2004.09.029
  2. A. Sarkar, K.L. Murty, J. Nucl. Mater. 456 (2015) 287-291. https://doi.org/10.1016/j.jnucmat.2014.09.071
  3. A.T. Motta, JOM 63 (2011) 59-63. https://doi.org/10.1007/s11837-011-0140-0
  4. B. Ensor, A.M. Lucente, M.J. Frederick, J. Sutliff, A.T. Motta, J. Nucl. Mater. 496 (2017) 301-312. https://doi.org/10.1016/j.jnucmat.2017.08.046
  5. P. Platt, E. Polatidis, P. Frankel, M. Klaus, M. Gass, R. Howells, M. Preuss, J. Nucl. Mater. 456 (2015) 415-425. https://doi.org/10.1016/j.jnucmat.2014.09.072
  6. P. Sioshansi, Mater. Sci. Eng. 90 (1987) 373-383. https://doi.org/10.1016/0025-5416(87)90235-7
  7. A.T. Motta, A. Paesano Jr., R.C. Birthcher, L. Amaral, Nucl. Instr. Method B 175-177 (2001) 521-525. https://doi.org/10.1016/S0168-583X(00)00644-3
  8. A.I. Ryabchikov, E.B. Kashkarov, N.S. Pushilina, M.S. Syrtanov, A.E. Shevelev, O.S. Korneva, A.N. Sutygina, A.M. Lider, Appl. Surf. Sci. 439 (2018) 106-112. https://doi.org/10.1016/j.apsusc.2018.01.021
  9. A.I. Ryabchikov, E.B. Kashkarov, A.E. Shevelev, M.S. Syrtanov, Surf. Coat. Tech. 383 (2020) 125272. https://doi.org/10.1016/j.surfcoat.2019.125272
  10. N. Afzal, M. Rafique, A. Abbasi, R. Ahmad, M. Saleem, J.M. Lee, Phys. Scripta 93 (2018) 115303. https://doi.org/10.1088/1402-4896/aae215
  11. M. Rafique, N. Afzal, A. Farooq, R. Ahmad, Mater. Res. Exp. 5 (2018) 106501. https://doi.org/10.1088/2053-1591/aad9ea
  12. I.R. Briss, J. Nucl. Mater. 34 (1970) 241-259. https://doi.org/10.1016/0022-3115(70)90192-3
  13. P.J. Goodhew, Inert gas bubbles, Mater. Sci. Tech. 6 (1990) 950-952. https://doi.org/10.1179/026708390790189597
  14. G.S. Was, Fundaments of Radiation Materials Science: Metals and Alloys, Springer-Verlag, Berlin, 2007.
  15. Gregory De Temmerman, K. Bystrov, J.J. Zielinski, J. Vac. Sci. Technol. A 30 (2012), 041306-1-7. https://doi.org/10.1116/1.4731196
  16. H.H. Shen, S.M. Peng, B. Chen, F.N. Naab, G.A. Sun, W. Zhou, X. Xiang, K. Sun, X.T. Zu, Mater. Char. 107 (2015) 309-316. https://doi.org/10.1016/j.matchar.2015.07.025
  17. N. Yoshida, H. Iwakiri, K. Tokonaga, T. Baba, J. Nucl. Mater. 337-339 (2005) 946-950. https://doi.org/10.1016/j.jnucmat.2004.10.162
  18. S.R. Soria, A.J. Tolley, E.A. Sanchez, Procedia Mater. Sci. 8 (2015) 486-493. https://doi.org/10.1016/j.mspro.2015.04.100
  19. A. Khan, M. Rafique, N. Afzal, Z. Khaliq, R. Ahmad, Nucl. Mater. Energy 20 (2019) 100690. https://doi.org/10.1016/j.nme.2019.100690
  20. Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker, Inc., New York, 2002, pp. 80-84.
  21. N.G. Thompson, J.H. Payer, Corrosion Testing Made Easy: DC Electrochemical Test Methods, NACE International, 1998.
  22. Marcel Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, National Association of Corrosion Engineers, USA, 1974.
  23. T.-L. Yau, V.E. Annamalai, Corrosion of zirconium and its alloys, Shreir's Corrosion 3 (2010) 2104-2107.
  24. D.R.I. Robert, H. Heidersbach, ASM Handbook: Corrosion Fundamentals, Testing and Protection, 13A, ASM International, 2003.
  25. P.R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill, New York, 1999.
  26. Lipika Rani Bairi, S. Ningshen, U. Kamachi Mudali, Baldev Raj, Corrosion Sci. 52 (2010) 2299.