DOI QR코드

DOI QR Code

Thermal aging effect on fracture toughness of GTAW/SMAW of 316L stainless steel: experiments and applicability of existing CASS models

  • Received : 2020.05.11
  • Accepted : 2020.10.11
  • Published : 2021.04.25

Abstract

This paper presents thermal aging effect on fracture toughness properties of GTAW (gas tungsten arc welding) and SMAW (shielded metal arc welding) of 316L stainless steels, and investigates the applicability of the existing three thermal aging models for CASS (cast stainless steels). Thermal aging was carried out at 350 ℃ for up to 15,000h and at 400 ℃ up to 8,000h. After aging, tensile and fracture toughness tests using 0.5T C(T) specimens were carried out at room temperature and at 288 ℃. Comparing with the predictions using three (ANL, French and H3T) thermal aging models for CASS show that the predictions can be very non-conservative at operating temperature, and thus that the existing thermal aging models for CASS cannot be applied to the welded stainless steels.

Keywords

Acknowledgement

This research was funded by National Research Foundation of Korea (NRF) supported by Ministry of Science and ICT (NRF-2018M2A8A4084016, NRF-2019M2D2A2048296).

References

  1. J.K. Sahu, U. Krupp, R.N. Ghosh, H.J. Christ, Effect of 475℃ Embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng. 508 (2009) 1-14. https://doi.org/10.1016/j.msea.2009.01.039
  2. O.K. Chopra, H.M. Chung, Aging of cast duplex stainless steels in LWR systems, Nucl. Eng. Des. 89 (1985) 305-318. https://doi.org/10.1016/0029-5493(85)90069-X
  3. O.K. Chopra, A. Sather, Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems, U.S.NRC, NUREG/CR-5385, ANL-89-17, 1990.
  4. H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Pres. Ves. Pip. 50 (1992) 179-213. https://doi.org/10.1016/0308-0161(92)90037-G
  5. M.D. Mathew, L.M. Lietzan, K.L. Murty, V.N. Shah, Low temperature aging Embrittlement of CF-8 stainless steel, Mater. Sci. Eng. 269 (1999) 186-196. https://doi.org/10.1016/S0921-5093(99)00140-9
  6. J.D. Kwon, J.C. Park, Y.S. Lee, W.H. Lee, Y.W. Park, An investigation of the degradation characteristics for casting stainless steel, CF8M, under high temperatures, Nucl. Eng. Des. 198 (2000) 227-240. https://doi.org/10.1016/S0029-5493(99)00315-5
  7. F. Xue, Z.X. Wang, G. Shu, W. Yu, H.J. Shi, W. Ti, Thermal aging effect on Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 239 (2009) 2217-2223. https://doi.org/10.1016/j.nucengdes.2009.06.009
  8. S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, X. Wang, Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature, Mater. Des. 50 (2013) 886-892. https://doi.org/10.1016/j.matdes.2013.02.061
  9. W.F. Michaud, P.T. Toben, W.K. Soppet, O.K. Chopra, Tensile-Property Characterization of Thermally Aged Cast Stainless Steels, U.S.NRC, NUREG/CR6275, ANL-94/37, 1995.
  10. T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater. 350 (2006) 47-55. https://doi.org/10.1016/j.jnucmat.2005.11.008
  11. S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure Evolution and impact fracture behaviors of Z3CN20-09m stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49. https://doi.org/10.1016/j.jnucmat.2012.09.004
  12. O.K. Chopra, W.J. Shack, Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components, U.S.NRC, NUREG/CR6275, ANL-94/37, 1995.
  13. P.L. Delliou, S. Saillet, Large EDF Tests on Aged Cast Duplex Stainless Steel Components e Part I: Reduced Scale Tests, ASME 2015 PVP Conference, 2015. PVP2015-45960.
  14. S. Kawaguchi, T. Nagasaki, K. Koyama, Prediction Method of Tensile Properties and Fracture Toughness of Thermally Aged Cast Duplex Stainless Steel Piping, ASME 2005 PVP Conference, 2005. PVP2005-71528.
  15. N. Ligneau, C. Pages, M. Akamatsu, C. Pokor, V. Calonne-Chatelee, Integrity and Life Assessment of Cast Duplex Stainless Steel Elbows Used in the Primary Loops of PWRs, ASME 2009 PVP Conference, 2009. PVP2009-77731.
  16. O.K. Chopra, Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems, U.S.NRC, NUREG/CR-4513, ANL-15/08, 2016.
  17. C. Faidy, Ageing Management of Cast Stainless Steel Components in French PWRs, ASME 2012 PVP Conference, 2012. PVP2012-78843.
  18. J.Y. Jeon, Y.J. Kim, J.W. Kim, S.Y. Lee, Effect of thermal ageing of CF8M on multiaxial ductility and application to fracture toughness prediction, Fatigue Fract. Eng. Mat. 38 (2015) 1466-1477. https://doi.org/10.1111/ffe.12316
  19. G.G. Youn, H.S. Nam, Y.J. Kim, J.W. Kim, Numerical prediction of thermal aging and cyclic loading effects on fracture toughness of cast stainless steels CF8A: experimental and numerical study, Int. J. Mech. Sci. 163 (2019) 105-120.
  20. S. Bonnet, J. Bourgoin, J. Champredonde, D. Guttman, M. Guttman, Relationship between Evolution of mechanical properties of various cast duplex stainless steels and metallurgical and aging parameters: outline of current EDF programmes, Mat. Sci. Tech. 6 (1990) 221-229. https://doi.org/10.1179/mst.1990.6.3.221
  21. Y. Miura, M. Yamamoto, Effect of Aging Temperature on Fracture Toughness of Cast Austenitic Stainless Steel, ASME 2015 PVP Conference, 2015. PVP2015-45434.
  22. Y. Miura, T. Sawabe, K. Betsuyaku, T. Arai, Thermal Aging Behavior of Grade CF3M Austenitic Stainless Steels, ASME 2017 PVP Conference, 2017. PVP2017-65959.
  23. M.F. Uddin, G.M. Wilkowski, D. Rudland, R.E. Kurth, F.W. Brust, D.J. Shim, Comparison of Different Thermal Aging Models to Assess Fully Aged Toughness in Cast Austenitic Stainless Steels, ASME 2015 PVP Conference, 2015. PVP2015-45790.
  24. M.F. Uddin, G.M. Wilkowski, S. Phothana, F.W. Brust, Flaw Evaluation Procedure for Cast Austenitic Stainless Steel Materials Using Thermal Aging Models, ASME 2017 PVP Conference, 2017. PVP2017-66111.
  25. W.J. Mills, Fracture toughness of type 304 and 316 stainless steels and their welds, Int. Mater. Rev. 42 (1997) 45-82. https://doi.org/10.1179/imr.1997.42.2.45
  26. I.J. O'Donnel, H. Huthmann, A.A. Tavasolli, The fracture toughness behaviour of austenitic steels and weld metal including the effects of thermal ageing and irradiation, Int. J. Pres. Ves. Pip. 65 (1996) 209-220. https://doi.org/10.1016/0308-0161(94)00132-3
  27. O.K. Chopra, Effects of Thermal Aging on Fracture Toughness and CharpyImpact Strength of Stainless Steel Pipe Welds, U.S.NRC, NUREG/CR-6428, ANL/EVS-17/3, 2017.
  28. D.J. Alexander, K.B. Alexander, M.K. Miller, R.K. Nanstad, Y.A. Davidov, The Effect of Aging at 343℃ on the Microstructure and Mechanical Properties of Type 308 Stainless Steel Weldments, U.S.NRC, NUREG/CR-6628, ORNL/TM13767, 2000.
  29. Y. Miura, T. Arai, Effect of Thermal Aging on Fracture Toughness of Austenitic Stainless Steel Welds, SMiRT-24, 2017 (Division IX.
  30. JSA, Method of Tensile Test for Metallic Materials, Japanese Standards Association, 2011. JIS Z2241.
  31. JSA, Method of Elevated Temperature Tensile Test for Steels and Heat-Resisting Alloys, Japanese Standards Association, 2012. JIS G0567.
  32. ASTM, Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials, 2015. ASTM E1820-15.
  33. S.H. Hong, H.M. Kim, B.S. Kong, C.H. Jang, I.H. Shin, J.S. Yang, K.S. Lee, Evaluation of the thermal ageing of austenitic stainless steel welds with 10% of dferrites, Int. J. Pres. Ves. Pip. 167 (2018) 32-42. https://doi.org/10.1016/j.ijpvp.2018.10.006
  34. R.A. Jeshvaghani, E. Harati, M. Shamanian, Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding, Mater. Des. 32 (2011) 1531-1536. https://doi.org/10.1016/j.matdes.2010.10.006
  35. M.B. Karamis, K. Yildizli, Surface modification of nodular cast iron: a comparative study on graphite Elimination, Mater. Sci. Eng. 527 (2010) 5225-5229. https://doi.org/10.1016/j.msea.2010.04.067
  36. W. Yu, M. Fan, J. Shi, F. Xue, X. Chen, H. Liu, A comparison between fracture toughness at different locations of SMAW and GTAW welded joints of primary coolant piping, Eng. Fract. Mech. 202 (2018) 135-146. https://doi.org/10.1016/j.engfracmech.2018.09.021
  37. J.H. Abboud, Microstructure and Erosion characteristic of nodular cast iron surface modified by tungsten inert gas, Mater. Des. 35 (2012) 677-684. https://doi.org/10.1016/j.matdes.2011.09.029
  38. A. Amirsadeghi, S.M. Heydarzadeh, Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI, J. Mater. Process. Technol. 201 (2008) 673-677. https://doi.org/10.1016/j.jmatprotec.2007.11.157
  39. F.C. Hull, Delta ferrite and martensite formation in stainless steels, Weld. Res. 52 (1973) 193-203.
  40. ASTM, Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content/Thereof, American Society for Testing and Materials, 2015. ASTM A 800/A 800M.