DOI QR코드

DOI QR Code

A Brief Review on Recent Developments in MAPbI3 Perovskite-Based Transistors

  • Padi, Siva Parvathi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Rabelo, Matheus (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2021.06.22
  • 심사 : 2021.07.08
  • 발행 : 2021.09.01

초록

Field-effect transistors (FETs) are the key elements of conventional electronics; hence, have drawn a lot of research and commercial interests. In recent years, metal halide perovskite materials have achieved a remarkable efficiency of 29.15% in the field of photovoltaics, and have drawn the scientific community's attention to promote their use in the field of optoelectronics, such as FETs and phototransistors. The MAPbI3 (methylammonium lead iodide) perovskite TFT has achieved a record hole mobility of 21.41 cm2/V-s in the year 2020. In this review, we will briefly discuss the physical structure of MAPbI3 perovskite and the essential factors that stimulate these devices, together with the role of defects, the ion migration concept, and the implication of both dielectric and electrode materials on the device's performance.

키워드

참고문헌

  1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics, 8, 506 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.134]
  2. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science, 342, 341 (2013). [DOI: https://doi.org/10.1126/science.1243982]
  3. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, Nat. Commun., 5, 5049 (2014). [DOI: https://doi.org/10.1038/ncomms6049]
  4. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater., 26, 1584 (2014). [DOI: https://doi.org/10.1002/adma.201305172]
  5. S. D. Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum, and C. Ballif, J. Phys. Chem. Lett., 5, 1035 (2014). [DOI: https://doi.org/10.1021/jz500279b]
  6. J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y. H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, and H. J. Snaith, Energy Environ. Sci., 12, 169 (2019). [DOI: https://doi.org/10.1039/c8ee03395a]
  7. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]
  8. NREL, Best Research-Cell Efficiency Chart, Photovoltaic Research, https://www.nrel.gov/pv/cell-efficiency.html (2021).
  9. World Record: Efficiency of Perovskite Silicon Tandem Solar Cell Jumps to 29.15 Per cent - Helmholtz-Zentrum Berlin (HZB), https://www.helmholtz-berlin.de/pubbin/newsseite?nid=21020;sprache=en; seitenid =1 (2021).
  10. F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Shiekh, and T. Wu, Nat. Commun., 6, 8238 (2015). [DOI: https://doi.org/10.1038/ncomms9238]
  11. S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, and H. Sirringhaus, Sci. Adv., 3, e1601935 (2017). [DOI: https://doi.org/10.1126/sciadv.1601935]
  12. L. Dou, Y. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, Nat. Commun., 5, 5404 (2014). [DOI: https://doi.org/10.1038/ncomms6404]
  13. Y. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. G. Park, Nature, 550, 87 (2017). [DOI: https://doi.org/10.1126/sciadv.1601935]
  14. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, ACS Nano, 10, 1224 (2016). [DOI: https://doi.org/10.1021/acsnano.5b06536]
  15. S. Yakunin, D. N. Dirin, Y. Shynkarnko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, and M. V. Kovalenko, Nat. Photonics, 10, 585 (2016). [DOI: https://doi.org/10.1038/nphoton.2016.139]
  16. Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, and H. Gao, Adv. Mater., 28, 305 (2016). [DOI: https://doi.org/10.1002/adma.201503954]
  17. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E.K.L. Yeow, T. C. Sum, and W. Huang, Nat. Commun., 8, 14558 (2017). [DOI: https://doi.org/10.1038/ncomms14558]
  18. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science, 342, 344 (2013). [DOI: https://doi.org/10.1126/science.1243167]
  19. S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, and S. I. Seok, Science, 356, 167 (2017). [DOI: https://doi.org/10.1126/science.aam6620]
  20. S. Razza, S. Castro-Hermosa, A. D. Carlo, and T. M. Brown, APL Mater., 4, 091508 (2016). [DOI: https://doi.org/10.1063/1.4962478]
  21. C. Tyznik, Z. A. Lamport, J. Sorli, D. Becker-Koch, Y. Vaynzof, Y. L. Loo, and O. D. Jurchescu, J. Phys.: Mater., 3, 034010 (2020). [DOI: https://doi.org/10.1088/2515-7639/ab9aac]
  22. Y. Wang, Y. Zhang, P. Zhang, and W. Zhang, Phys. Chem. Chem. Phys., 17, 11516 (2015). [DOI: https://doi.org/10.1039/c5cp00448a]
  23. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nat. Phys., 11, 582 (2015). [DOI: https://doi.org/10.1038/nphys3357]
  24. L. M. Herz, ACS Energy Lett., 2, 1539 (2017). [DOI: https://doi.org/10.1021/acsenergylett.7b00276]
  25. X. J. She, C. Chen, G. Divitini, B. Zhao, Y. Li, J. Wang, J. F. Orri, L. Cui, W. Xu, J. Peng, S. Wang, A. Sadhanala, and H. Sirringhaus, Nat. Electron., 3, 694 (2020). [DOI: https://doi.org/10.1038/s41928-020-00486-5]
  26. S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, and H. Sirringhaus, Sci. Adv., 3, e1601935 (2017). [DOI: https://doi.org/10.1126/sciadv.1601935]
  27. T. Matsushima, M. R. Leyden, T. Fujihara, C. Qin, A.S.D. Sandanayaka, and C. Adachi, Appl. Phys. Lett., 115, 120601 (2019). [DOI: https://doi.org/10.1063/1.5116411]
  28. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kiessling, A. Kohler, Y. Vaynzof, and S. Huettner, Adv. Mater., 28, 2446 (2016). [DOI: https://doi.org/10.1002/adma.201503832]
  29. F. Jahanbakhshi, M. Mladenovic, M. Dankl, A. Boziki, P. Ahlawat, and U. Rothlisberger, Helv. Chim. Acta, 104, e2000232 (2021). [DOI: https://doi.org/10.1002/hlca.202000232]
  30. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, and M. Scheffler, Sci. Adv., 5, eaav0693 (2019). [DOI: https://doi.org/10.1126/sciadv.aav0693]
  31. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J.T.W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett., 5, 1511 (2014). [DOI: https://doi.org/10.1021/jz500113x]
  32. C. Li, A. Guerrero, S. Huettner, and J. Bisquert, Nat. Commun., 9, 5113 (2018). [DOI: https://doi.org/10.1038/s41467-018-07571-6]
  33. P. Fassl, S. Ternes, V. Lami, Y. Zakharko, D. Heimfarth, P. E. Hopkinson, F. Paulus, A. D. Taylor, J. Zaumseil, and Y. Vaynzof, ACS Appl. Mater. Interfaces, 11, 2490 (2019). [DOI: https://doi.org/10.1021/acsami.8b16460]
  34. S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, and D. S. Ginger, J. Phys. Chem. C, 122, 12633 (2018). [DOI: https://doi.org/10.1021/acs.jpcc.8b03255]
  35. M. H. Futscher, J. M. Lee, L. McGovern, L. A. Muscarella, T. Wang, M. I. Haider, A. Fakharuddin, L. Schmidt-Mende, and B. Ehrler, Mater. Horiz., 6, 1497 (2019). [DOI: https://doi.org/10.1039/C9MH00445A]
  36. F. Jiang, J. Pothoof, F. Muckel, R. Giridharagopal, J. Wang, and D. S. Ginger, ACS Energy Lett., 6, 100 (2021). [DOI: https://doi.org/10.1021/acsenergylett.0c02032]
  37. S. P. Senanayak, M. Abdi-Jalebi, V. S. Kamboj, R. Carey, R. Shivanna, T. Tian, G. Schweicher, J. Wang, N. Giesbrecht, D. Di Nuzzo, H. E. Beere, P. Docampo, D. A. Ritchie, D. FairenJimenez, R. H. Friend, and H. Sirringhaus, Sci. Adv., 6, eaaz4948 (2020). [DOI: https://doi.org/10.1126/sciadv.aaz4948]
  38. H. Li, Q. Wei, and Z. Ning, Appl. Phys. Lett., 117, 060502 (2020). [DOI: https://doi.org/10.1063/5.0014804]
  39. D. H. Kang and N. G. Park, Adv. Mater., 31, 1805214 (2019). [DOI: https://doi.org/10.1002/adma.201805214]
  40. J. Troughton and D. Atkinson, J. Mater. Chem. C, 7, 12388 (2019). [DOI: https://doi.org/10.1039/C9TC03933C]
  41. P. Gorrn, T. Riedl, and W. Kowalsky, J. Phys. Chem. C, 113, 11126 (2009). [DOI: https://doi.org/10.1021/jp9018487]
  42. Y. Mei, C. Zhang, Z. V. Vardeny, and O. D. Jurchescu, MRS Commun., 5, 297 (2015). [DOI: https://doi.org/10.1557/mrc.2015.21]
  43. G. W. Kim and A. Petrozza, Adv. Energy Mater., 10, 2001959 (2020). [DOI: https://doi.org/10.1002/aenm.202001959]
  44. W. Chu, Q. Zheng, O. V. Prezhdo, J. Zhao, and W. A. Saidi, Sci. Adv., 6, eaaw7453 (2020). [DOI: https://doi.org/10.1126/sciadv.aaw7453]
  45. X. Zhang, M. E. Turiansky, and C. G. Van de Walle, J. Phys. Chem. C, 124, 6022 (2020). [DOI: https://doi.org/10.1021/acs.jpcc.0c01324]
  46. J. Ji, F. Haque, N.T.T. Hoang, and M. Mativenga, Crystals, 9, 539 (2019). [DOI: https://doi.org/10.3390/cryst9100539]
  47. S. Jana, E. Carlos, S. Panigrahi, R. Martins, and E. Fortunato, ACS Nano, 14, 14790 (2020). [DOI: https://doi.org/10.1021/acsnano.0c02862]
  48. S. D. Stranks, P. K. Nayak, W. Zhang, T. Stergiopoulos, and H. J. Snaith, Angew. Chem. Int. Ed., 54, 3240 (2015). [DOI: https://doi.org/10.1002/anie.201410214]
  49. B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks, and A. Facchetti, Chem. Rev., 118, 5690 (2018). [DOI: https://doi.org/10.1021/acs.chemrev.8b00045]
  50. H. F. Haneef, A. M. Zeidell, and O. D. Jurchescu, J. Mater. Chem. C, 8, 759 (2020). [DOI: https://doi.org/10.1039/C9TC05695E]
  51. T. Matsushima, S. Hwang, A.S.D. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro, and C. Adachi, Adv. Mater., 28, 10275 (2016). [DOI: https://doi.org/10.1002/adma.201603126]
  52. L. Tang, Y. Peng, Z. Zhou, Y. Wu, J. Xu, J. Li, Y. Du, L. Huang, H. Cai, J. Ni, and J. Zhang, Appl. Phys. A, 124, 624 (2018). [DOI: https://doi.org/10.1007/s00339-018-2049-8]
  53. W. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M. L. Tietze, U. Buttner, X. Wang, Z. Wang, M. N. Hedhili, C. Guo, T. Wu, and A. Amassian, Nat. Commun., 9, 5354 (2018). [DOI: https://doi.org/10.1038/s41467-018-07706-9]
  54. J. Li, Z. Zhou, Y. Peng, J. Zhang, N. Guo, and Y. Sun, Org. Electron., 84, 105740 (2020). [DOI: https://doi.org/10.1016/j.orgel.2020.105740]
  55. N. D. Canicoba, N. Zagni, F. Liu, G. McCuistian, K. Fernando, H. Bellezza, B. Traore, R. Rogel, H. Tsai, L. L. Brizoual, W. Nie, J. J. Crochet, S. Tretiak, C. Katan, J. Even, M. G. Kanatzidis, B. W. Alphenaar, J. C. Blancon, M. A. Alam, and A. D. Mohite, ACS Mater. Lett., 1, 633 (2019). [DOI: https://doi.org/10.1021/acsmaterialslett.9b00357]
  56. H. P. Kim, M. Vasilopoulou, H. Ullah, S. Bibi, A.E.X. Gavim, A. G. Macedo, W. J. Da Silva, F. K. Schneider, A. A. Tahir, M.A.M. Teridi, P. Gao, A.R.B.M. Yusoff, and M. K. Nazeeruddin, Nanoscale, 12, 7641 (2020). [DOI: https://doi.org/10.1039/C9NR10745B]
  57. P. J. Diemer, Z. A. Lamport, Y. Mei, J. W. Ward, K. P. Goetz, W. Li, M. M. Payne, M. Guthold, J. E. Anthony, and O. D. Jurchescu, Appl. Phys. Lett., 107, 103303 (2015). [DOI: https://doi.org/10.1063/1.4930310]
  58. T. Matsushima, F. Mathevet, B. Heinrich, S. Terakawa, T. Fujihara, C. Qin, A.S.D. Sandanayaka, J. C. Ribierre, and C. Adachi, Appl. Phys. Lett., 109, 253301 (2016). [DOI: https://doi.org/10.1063/1.4972404]
  59. T. Matsushima, S. Hwang, S. Terakawa, T. Fujihara, A.S.D. Sandanayaka, C. Qin, and C. Adachi, Appl. Phys. Express, 10, 024103 (2017). [DOI: https://doi.org/10.7567/APEX.10.024103]
  60. J. W. Ward, H. L. Smith, A. Zeidell, P. J. Diemer, S. R. Baker, H. Lee, M. M. Payne, J. E. Anthony, M. Guthold, and O. D. Jurchescu, ACS Appl. Mater. Interfaces, 9, 18120 (2017). [DOI: https://doi.org/10.1021/acsami.7b03232]
  61. J. Wang, S. P. Senanayak, J. Liu, Y. Hu, Y. Shi, Z. Li, C. Zhang, B. Yang, L. Jiang, D. Di, A. V. Ievlev, O. S. Ovchinnikova, T. Ding, H. Deng, L. Tang, Y. Guo, J. Wang, K. Xiao, D. Venkateshvaran, L. Jiang, D. Zhu, and H. Sirringhaus, Adv. Mater., 31, 1902618 (2019). [DOI: https://doi.org/10.1002/adma.201902618]
  62. J.H.L. Ngai, J.K.W. Ho, R.K.H. Chan, S. H. Cheung, L. M. Leung, and S. K. So, RSC Adv., 7, 49353 (2017). [DOI: https://doi.org/10.1039/C7RA08699G]
  63. D. Li, G. Wang, H. C. Cheng, C. Y. Chen, H. Wu, Y. Liu, Y. Huang, and X. Duan, Nat. Commun., 7, 11330 (2016). [DOI: https://doi.org/10.1038/ncomms11330]
  64. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science, 286, 945 (1999). [DOI: https://doi.org/10.1126/science.286.5441.945]
  65. M. Mativenga, J. Ji, N. T. to Hoang, and F. Haque, Adv. Mater. Interfaces, 7, 1901777 (2020). [DOI: https://doi.org/10.1002/admi.201901777]
  66. M. K. Li, T. P. Chen, Y. F. Lin, C. M. Raghavan, W. L. Chen, S. H. Yang, R. Sankar, C. W. Luo, Y. M. Chang, and C. W. Chen, Small, 14, 1803763 (2018). [DOI: https://doi.org/10.1002/smll.201803763]
  67. D. Li, H. C. Cheng, H. Wu, Y. Wang, J. Guo, G. Wang, Y. Huang, and X. Duan, J. Phys. Chem. Lett., 8, 429 (2017). [DOI: https://doi.org/10.1021/acs.jpclett.6b02841]
  68. N. N. Shlenskaya, N. A. Belich, M. Gratzel, E. A. Goodilin, and A. B. Tarasov, J. Mater. Chem. A, 6, 1780 (2018). [DOI: https://doi.org/10.1039/C7TA10217H]
  69. A. M. Zeidell, C. Tyznik, L. Jennings, C. Zhang, H. Lee, M. Guthold, Z. V. Vardeny, and O. D. Jurchescu, Adv. Electron. Mater., 4, 1800316 (2018). [DOI: https://doi.org/10.1002/aelm.201800316]
  70. F. Haque and M. Mativenga, Jpn. J. Appl. Phys., 59, 081002 (2020). [DOI: https://doi.org/10.35848/1347-4065/aba5e1]
  71. N.T.T. Hoang, F. Haque, J. Ji, and M. Mativenga, IEEE Electron Device Lett., 40, 917 (2019). [DOI: https://doi.org/10.1109/LED.2019.2913658]
  72. F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong, and H. Zhong, Chem. Mater., 29, 3793 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b01100]
  73. D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Anthony, Nat. Mater., 7, 216 (2008). [DOI: https://doi.org/10.1038/nmat2122]
  74. A. R. Bowman, M. T. Klug, T.A.S. Doherty, M. D. Farrar, S. P. Senanayak, B. Wenger, G. Divitini, E. P. Booker, Z. AndajiGarmaroudi, S. Macpherson, E. Ruggeri, H. Sirringhaus, H. J. Snaith, and S. D. Stranks, ACS Energy Lett., 4, 2301 (2019). [DOI: https://doi.org/10.1021/acsenergylett.9b01446]
  75. S. Zhou, Y. Ma, G. Zhou, X. Xu, M. Qin, Y. Li, Y. J. Hsu, H. Hu, G. Li, N. Zhao, J. Xu, and X. Lu, ACS Energy Lett., 4, 534 (2019). [DOI: https://doi.org/10.1021/acsenergylett.8b02478]
  76. Y. Meng, C. Lan, F. Li, S. P. Yip, R. Wei, X. Kang, X. Bu, R. Dong, H. Zhang, and J. C. Ho, ACS Nano, 13, 6060 (2019). [DOI: https://doi.org/10.1021/acsnano.9b02379]
  77. S. Shao, J. Liu, G. Portale, H. H. Fang, G. R. Blake, G. H. ten Brink, L.J.A. Koster, and M. A. Loi, Adv. Energy Mater., 8, 1702019 (2018). [DOI: https://doi.org/10.1002/aenm.201702019]
  78. Z. Xin, Y. Ding, Y. Zhu, C. Fu, Z. Yao, Q. Chen, G. Liu, and F. Shan, Adv. Electron. Mater., 6, 1901110 (2020). [DOI: https://doi.org/10.1002/aelm.201901110]
  79. C. Ma, S. Clark, Z. Liu, L. Liang, Y. Firdaus, R. Tao, A. Han, X. Liu, L. J. Li, T. D. Anthopoulos, M. C. Hersam, and T. Wu, ACS Nano, 14, 3969 (2020). [DOI: https://doi.org/10.1021/acsnano.9b07888]
  80. F. Haque, S. Lim, S. Lee, Y. Park, and M. Mativenga, IEEE Electron Device Lett., 41, 1086 (2020). [DOI: https://doi.org/10.1109/LED.2020.2995086]