DOI QR코드

DOI QR Code

Performance and competitiveness of red vs. green phenotypes of a cyanobacterium grown under artificial lake browning

  • Received : 2021.03.04
  • Accepted : 2021.07.19
  • Published : 2021.09.15

Abstract

Increasing inputs of dissolved organic matter (DOM) to northern lakes is resulting in 'lake browning.' Lake browning profoundly affects phytoplankton community composition by modifying two important environmental drivers-light and nutrients. The impact of increased DOM on native isolates of red and green-pigmented cyanobacteria identified as Pseudanabaena, which emerged from a Dolichospermum bloom (Dickson Lake, Algonquin Provincial Park, Ontario, Canada) in 2015, were examined under controlled laboratory conditions. The genomes were sequenced to identify phylogenetic relatedness and physiological similarities, and the physical and chemical effects of increased DOM on cellular performance and competitiveness were assessed. Our study findings were that the isolated red and green phenotypes are two distinct species belonging to the genus Pseudanabaena; that both isolates remained physiologically unaffected when grown independently under defined DOM regimes; and that neither red nor green phenotype achieved a competitive advantage when grown together under defined DOM regimes. While photosynthetic pigment diversity among phytoplankton offers niche-differentiation opportunities, the results of this study illustrate the coexistence of two distinct photosynthetic pigment phenotypes under increasing DOM conditions.

Keywords

Acknowledgement

This work was funded by an NSERC Discovery Grants 06579-2014 and 4458-2016 awarded to IFC and CGT, respectively, and an NSERC CREATE ABATE awarded to IFC and CGT (448172-2014) and Western Strategic Funds awarded to VT.

References

  1. Acinas, S. G., Haverkamp, T. H. A., Huisman, J. & Stal, L. J. 2009. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J. 3:31-46. https://doi.org/10.1038/ismej.2008.78
  2. Andersen, R. A. 2005. Algal culturing techniques. Elsevier, New York, 578 pp.
  3. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A. & Pevzner, P. A. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-477. https://doi.org/10.1089/cmb.2012.0021
  4. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973. https://doi.org/10.1093/bioinformatics/btp348
  5. Creed, I. F., Bergstrom, A. -K., Trick, C. G., Grimm, N. B., Hessen, D. O., Karlsson, J., Kidd, K. A., Kritzberg, E., McKnight, D. M., Freeman, E. C., Senar, O. E., Andersson, A., Ask, J., Berggren, M., Cherif, M., Giesler, R., Hotchkiss, E. R., Kortelainen, P., Palta, M. M., Vrede, T. & Weyhenmeyer, G. A. 2018. Global change-driven effects on dissolved organic matter composition: implications for food webs of northern lakes. Glob. Change Biol. 24:3692-3714. https://doi.org/10.1111/gcb.14129
  6. Dvorak, P., Jahodarova, E., Hasler, P., Gusev, E. & Poulickova, A. 2015. A new tropical cyanobacterium Pinocchia polymorpha gen. et sp. nov. derived from the genus Pseudanabaena. Fottea 15:113-120.
  7. Ekvall, M. K., de la Calle Martin, J., Faassen, E. J., Gustafsson, S., Lurling, M. & Hansson, L. -A. 2013. Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58:2414-2422. https://doi.org/10.1111/fwb.12220
  8. Erratt, K. J., Creed, I. F. & Trick, C. G. 2018. Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria. Freshw. Biol. 63:626-638. https://doi.org/10.1111/fwb.13099
  9. Favot, E. J., Ruhland, K. M., DeSellas, A. M., Ingram, R., Paterson, A. M. & Smol, J. P. 2019. Climate variability promotes unprecedented cyanobacterial blooms in a remote oligotrophic Ontario lake: evidence from paleolimnology. J. Paleolimnol. 62:31-52. https://doi.org/10.1007/s10933-019-00074-4
  10. Friends of Algonquin Park. 2015. Algae bloom update - Dickson Lake and Lake Lavieille. Available from: https://www.algonquinpark.on.ca/news/2015/2015-02-17_dickson_lake_algae_bloom_update.php. Accessed Mar 4, 2021.
  11. Grebert, T., Dore, H., Partensky, F., Farrant, G. K., Boss, E. S., Picheral, M., Guidi, L., Pesant, S., Scanlan, D. J., Wincker, P., Acinas, S. G., Kehoe, D. M. & Garczarek, L. 2018. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115:E2010-E2019. https://doi.org/10.1073/pnas.1717069115
  12. Green, N. W., McInnis, D., Hertkorn, N., Maurice, P. A. & Perdue, E. M. 2015. Suwannee River natural organic matter: isolation of the 2R101N reference sample by reverse osmosis. Environ. Eng. Sci. 32:38-44. https://doi.org/10.1089/ees.2014.0284
  13. Guillard, R. R. L. 1973. Division rates. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp. 289-312.
  14. Guillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the light microscope. In Andersen, R. A. (Ed.) Algal Culturing Techniques. Elsevier, New York, pp. 239-252.
  15. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072-1075. https://doi.org/10.1093/bioinformatics/btt086
  16. Haverkamp, T. H. A., Schouten, D., Doeleman, M., Wollenzien, U., Huisman, J. & Stal, L. J. 2009. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J. 3:397-408. https://doi.org/10.1038/ismej.2008.118
  17. Hirose, Y., Shimada, T., Narikawa, R., Katayama, M. & Ikeuchi, M. 2008. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc. Natl. Acad. Sci. U. S. A. 105:9528-9533. https://doi.org/10.1073/pnas.0801826105
  18. Huisman, J., Jonker, R. R., Zonneveld, C. & Weissing, F. J. 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80:211-222. https://doi.org/10.1890/0012-9658(1999)080[0211:CFLBPS]2.0.CO;2
  19. Hutchinson, G. E. 1961. The paradox of the plankton. Am. Nat. 95:137-145. https://doi.org/10.1086/282171
  20. Jeffrey, S. W. & Humphrey, G. F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167:191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  21. Kanehisa, M., Sato, Y. & Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428:726-731. https://doi.org/10.1016/j.jmb.2015.11.006
  22. Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L. & Jansson, M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460:506-509. https://doi.org/10.1038/nature08179
  23. Katoh, K. & Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-780. https://doi.org/10.1093/molbev/mst010
  24. Kehoe, D. M. 2010. Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 107:9029-9030. https://doi.org/10.1073/pnas.1004510107
  25. Kehoe, D. M. & Gutu, A. 2006. Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57:127-150. https://doi.org/10.1146/annurev.arplant.57.032905.105215
  26. Kling, H. J., Dail Laughinghouse, H. D., Smarda, J., Komarek, J., Acreman, J., Bruun, K., Watson, S. B. & Chen, F. 2012. A new red colonial Pseudanabaena (Cyanoprokaryota, Oscillatoriales) from North American large lakes. Fottea 12:327-339. https://doi.org/10.5507/fot.2012.023
  27. Konstantinou, D., Voultsiadou, E., Panteris, E. & Gkelis, S. 2021. Revealing new sponge-associated cyanobacterial diversity: novel genera and species. Mol. Phylogenet. Evol. 155:106991. https://doi.org/10.1016/j.ympev.2020.106991
  28. Kritzberg, E. S., Hasselquist, E. M., Skerlep, M., Lofgren, S., Olsson, O., Stadmark, J., Valinia, S., Hansson, A. & Laudon, H. 2019. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49:375-390. https://doi.org/10.1007/s13280-019-01227-5
  29. Lawrenz, E., Fedewa, E. J. & Richardson, T. L. 2011. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J. Appl. Phycol. 23:865-871. https://doi.org/10.1007/s10811-010-9600-0
  30. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10-12. https://doi.org/10.14806/ej.17.1.200
  31. Maxwell, D. P., Falk, S., Trick, C. G. & Huner, N. P. A. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105:535-543. https://doi.org/10.1104/pp.105.2.535
  32. Neary, B. P., Dillon, P. J., Munro, J. R. & Clark, B. J. 1990. The acidification of Ontario lakes: an assessment of their sensitivity and current status with respect to biological damage. Ontario Ministry of the Environment. Available from: https://www.biodiversitylibrary.org/item/78250. Accessed Mar 4, 2021.
  33. Oberhaus, L., Briand, J. F., Leboulanger, C., Jacquet, S. & Humbert, J. F. 2007. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens. J. Phycol. 43:1191-1199. https://doi.org/10.1111/j.1529-8817.2007.00414.x
  34. Pagano, T., Bida, M. & Kenny, J. E. 2014. Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate. Water 6:2862-2897. https://doi.org/10.3390/w6102862
  35. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61.
  36. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  37. Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  38. Senar, O. E., Creed, I. F. & Trick, C. G. 2021. Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquat. Sci. 83:1-15. https://doi.org/10.1007/s00027-020-00757-5
  39. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210-3212. https://doi.org/10.1093/bioinformatics/btv351
  40. Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., Larsen, S., Lennon, J. T., Read, J. S., Sadro, S. & Saros, J. E. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18:376-389. https://doi.org/10.1007/s10021-015-9848-y
  41. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  42. Stomp, M., Huisman, J., De Jongh, F., Veraart, A. J., Gerla, D., Rijkeboer, M., Ibelings, B. W., Wollenzien, U. I. & Stal, L. J. 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107. https://doi.org/10.1038/nature03044
  43. Stomp, M., Huisman, J., Voros, L., Pick, F. R., Laamanen, M., Haverkamp, T. & Stal, L. J. 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10:290-298. https://doi.org/10.1111/j.1461-0248.2007.01026.x
  44. Urrutia-Cordero, P., Ekvall, M. K. & Hansson, L. A. 2016. Local food web management increases resilience and buffers against global change effects on freshwaters. Sci. Rep. 6:29542. https://doi.org/10.1038/srep29542
  45. Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M., Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M. & Cochlan, W. P. 2015. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 49:68-93. https://doi.org/10.1016/j.hal.2015.07.009
  46. Wood, A. M., Everroad, R. C. & Wingard, L. M. 2005. Measuring growth rates in microalgal cultures. In Andersen, R. A. (Ed.) Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA, pp. 269-285.