DOI QR코드

DOI QR Code

SYMMETRIC TOEPLITZ DETERMINANTS ASSOCIATED WITH A LINEAR COMBINATION OF SOME GEOMETRIC EXPRESSIONS

  • Ahuja, Om P. (Department of Mathematics, Kent State University) ;
  • Khatter, Kanika (Department of Mathematics, Hindu Girls College) ;
  • Ravichandran, V. (Department of Mathematics, National Institute of Technology)
  • Received : 2021.03.21
  • Accepted : 2021.05.01
  • Published : 2021.09.25

Abstract

Let f be the function defined on the open unit disk, with f(0) = 0 = f'(0) - 1, satisfying Re (αf'(z) + (1 - α)zf'(z)/f(z)) > 0 or Re (αf'(z) + (1 - α)(1 + zf"(z)/f'(z)) > 0 respectively, where 0 ≤ α ≤ 1. Estimates for the Toeplitz determinants have been obtained when the elements are the coefficients of the functions belonging to these two subclasses.

Keywords

References

  1. O. P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, J. Math. Anal. Appl. 138 (1989), no. 2, 385-392. https://doi.org/10.1016/0022-247x(89)90298-9
  2. N. M. Alarifi, R. M. Ali and V. Ravichandran, On the second Hankel determinant for the kth-root transform of analytic functions, Filomat 31 (2017), no. 2, 227-245. https://doi.org/10.2298/FIL1702227A
  3. H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of the univalent functions, Monatsh. Math. 80 (1975), no. 4, 257-264. https://doi.org/10.1007/BF01472573
  4. M. F. Ali, D. K. Thomas and A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2018), no. 2, 253-264. https://doi.org/10.1017/S0004972717001174
  5. U. Grenander and G. Szego, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.
  6. W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967.
  7. V. Kumar, S. Kumar and V. Ravichandran, Third Hankel determinant for certain classes of analytic functions, in Mathematical analysis. I. Approximation theory, 223-231, Springer Proc. Math. Stat., 306, Springer, Singapore.
  8. K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Third Hankel determinant of starlike and convex functions, J. Anal. 28 (2020), no. 1, 45-56. https://doi.org/10.1007/s41478-017-0037-6
  9. B. Kowalczyk et al., The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 4, 3143-3158. https://doi.org/10.1007/s40840-019-00859-w
  10. A. Lecko, Y. J. Sim and B. Smiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 39, 11 pp. https://doi.org/10.1007/s13324-020-00354-7
  11. S. K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, 2013:281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
  12. S. S. Miller, P. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554. https://doi.org/10.1090/S0002-9939-1973-0313490-3
  13. S. S. Miller, P. T. Mocanu and M. O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), no. 1, 157-168. https://doi.org/10.2140/pjm.1978.79.157
  14. P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11(34) (1969), 127-133.
  15. K. Noshiro, On the theory of schlicht functions, J. Fat. Sci. Hokkaido Univ. Ser. I 2 (1934), 29-155.
  16. V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J.M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, J. Complex Anal. 2016, Art. ID 4960704, 4 pp.
  17. S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, Gen. Math. 17 (2009), no. 3, 135-139.
  18. S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310-340. https://doi.org/10.1090/S0002-9947-1935-1501813-X
  19. K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (2016), no. 3, 577-598. https://doi.org/10.1007/s10208-015-9254-z