DOI QR코드

DOI QR Code

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea

최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측

  • Kim, Sukyung (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Tae Kyung (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Yoon, Sukhee (Korea Association of Soil and Water Conservation) ;
  • Jang, Keunchang (Forest ICT Research Center, National Institute of Forest Science) ;
  • Lim, Hyemin (Forest Tree Improvement and Biotechnology Division, National Institute of Forest Science) ;
  • Lee, Wi Young (Forest Tree Improvement and Biotechnology Division, National Institute of Forest Science) ;
  • Won, Myoungsoo (Forest ICT Research Center, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology Division, National Institute of Forest Science) ;
  • Kim, Hyun Seok (Department of Agriculture, Forestry and Bioresources, Seoul National University)
  • 김수경 (서울대학교 농림생물자원학부) ;
  • 김태경 (서울대학교 농림생물자원학부) ;
  • 윤석희 (사방협회) ;
  • 장근창 (국립산림과학원 산림ICT연구센터) ;
  • 임혜민 (국림산림과학원 임목자원연구과) ;
  • 이위영 (국림산림과학원 임목자원연구과) ;
  • 원명수 (국립산림과학원 산림ICT연구센터) ;
  • 임종환 (국립산림과학원 산림생태연구과) ;
  • 김현석 (서울대학교 농림생물자원학부)
  • Received : 2021.05.13
  • Accepted : 2021.06.29
  • Published : 2021.09.30

Abstract

Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

최근 급격한 봄철 기온 상승과 기후변화의 영향으로 한반도에 분포하고 있는 아까시나무의 개화 시기가 변화하면서 지역간에 동시 개화 현상(simultaneous blooming)이 관측되고 있다. 이러한 변화는 국내 양봉 산업에 큰 변화를 초래하였고, 이로 인해 정확도 높은 아까시나무 개화시기 정보에 대한 수요가 증가하고 있다. 따라서, 본 연구를 통해 아까시나무의 지역별 개화 시기 변화를 잘 설명할 수 있는 신뢰도 높은 개화 시기 예측 모형을 개발하고자 하였다. 이를 위해 지난 12년(2006~2017년)간 전국 26개 지점에서 관측된 아까시나무 만개일 자료와 과거 일기온 복원 자료를 활용하여 봄철 기온 및 아까시나무 만개일 변화의 경향성을 권역별로 파악하고, 과정기반모형을 활용하여 지역 통합 모형(SM)과 함께 지역적 특성을 반영하는 세 모형-SM에 지점별 보정계수를 도입한 수정 통합 모형(MSM), 권역별로 모수를 추정하는 권역별 통합 모형(GM), 관측 지점별로 모수를 추정하는 지역 모형(LM)-을 도출, 성능을 비교하였다. 기온 및 만개일의 경향 분석 결과, 남부 지역에 비해 봄철 기온 상승률이 2배 이상 높았던 중북부 내륙 지역의 경우 만개일이 빠른 속도로 앞당겨져, 결과적으로 남서부 해안 지역과의 만개일 차이는 1년에 0.7098일씩 감소하였다(p-value=0.0417). 전체 지역에 대한 모형의 성능 비교 결과, 지역 특이성이 반영되지 않은 SM에 비해서 MSM은 24% 이상, LM은 15% 이상 감소한 RMSE 값을 나타냈다. 또한 LM과 MSM의 예측 알고리즘을 전국 범위로 확대하여 4년 간(2014~2017년) 16개의 추가 관측 지점을 대상으로 검증한 결과, LM에 코크리깅(Co-kriging)기법을 적용한 방법이 보정계수 전국 분포도를 추정하여 SM을 보정하는 방법보다 예측력이 더 뛰어났으며, 오차의 분포는 두 모형 간에 통계적으로 유의한 차이를 보였다(RMSE: p-value=0.0118, Bias: p-value=0.0471). 본 연구는 아까시나무의 개화 시기 예측에 있어 지역 단위 예측의 신뢰도를 향상시키고 모형을 넓은 지역 범위로 확대, 적용하기 위한 방안을 제시하였다.

Keywords

Acknowledgement

본 연구는 산림청(국립산림과학원) '산악지역 영향예보 기반 구축 및 맞춤형 산악기상·기후 서비스 체계 개발'(과제번호: FE0500-2018-02)과 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(FTIS 2020185D10-2122-AA02)'의 지원에 의하여 이루어진 것입니다.

References

  1. Aguilera, F. et al. 2015. Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. International Journal of Biometeorology 59(5): 629-641. https://doi.org/10.1007/s00484-014-0876-7
  2. Basler, D. 2016. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology 217: 10-21. https://doi.org/10.1016/j.agrformet.2015.11.007
  3. Bertin, R.I. 2008. Plant phenology and distribution in relation to recent climate change. Journal of the Torrey Botanical Society 135(1): 126-146. https://doi.org/10.3159/07-RP-035R.1
  4. Blumel, K. and Chmielewski, F.M. 2012. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology 164: 10-19. https://doi.org/10.1016/j.agrformet.2012.05.001
  5. Bogawski, P., Grewling, L. and Jackowiak, B. 2019. Predicting the onset of Betula pendula flowering in Poznan (Poland) using remote sensing thermal data. Science of the Total Environment 658: 1485-1499. https://doi.org/10.1016/j.scitotenv.2018.12.295
  6. Caffarra, A., Donnelly, A., Chuine, I. and Jones, M. 2011a. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Climate Research 46(2): 147-157. https://doi.org/10.3354/cr00980
  7. Caffarra, A., Donnelly, A. and Chuine, I. 2011b. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research 46: 159-170. https://doi.org/10.3354/cr00983
  8. Campbell, R.K. and Sorensen, F.C. 1973. Cold-acclimation in seedling Douglas-fir related to phenology and provenance. Ecology 54(5): 1148-1151. https://doi.org/10.2307/1935582
  9. Campoy, J.A., Ruiz, D., Allderman, L., Cook, N. and Egea, J. 2012. The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: An approach in Murcia (Spain) and the Western Cape (South Africa). European Journal of Agronomy 37(1): 43-55. https://doi.org/10.1016/j.eja.2011.10.004
  10. Cesaraccio, C., Spano, D., Snyder, R.L. and Duce, P. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology, 126(1): 1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  11. Cesaraccio, C., Spano, D., Snyder, R.L. and Duce, P. 2005. Corrigendum to "Chilling and forcing model to predict bud-burst of crop and forest species". Agricultural and Forest Meteorology 129(3): 211. https://doi.org/10.1016/j.agrformet.2004.03.010
  12. Chmielewski, F.-M. and Gotz, K.-P. 2016. Performance of models for the beginning of sweet cherry blossom under current and changed climate conditions. Agricultural and Forest Meteorology 218-219: 85-91. https://doi.org/10.1016/j.agrformet.2015.11.022
  13. Chuine, I., Cour, P., Rousseau, D.D. 1998. Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Cell and Environment, 21(5): 455-466. https://doi.org/10.1046/j.1365-3040.1998.00299.x
  14. Chun, J. 2016. Modelling of Peach Tree (Prunus persica) Full Blooming Dates Using APCC MME Seasonal Forecasts, APEC Climate Center, Busan.
  15. Chung, U., Jung, J., Seo, H. and Yun, J.I. 2009. Using urban effect corrected temperature data and a tree phenology model to project geographical shift of cherry flowering date in South Korea. Climatic Change 93(3): 447-463. https://doi.org/10.1007/s10584-008-9504-z
  16. Duputie, A., Rutschmann, A., Ronce, O. and Chuine. 2015. Phenological plasticity will not help all species adapt to climate change. Global Change Biology 21(8): 3062-3073. https://doi.org/10.1111/gcb.12914
  17. Gehan, E. A. 1965. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52(1-2): 203-224. https://doi.org/10.2307/2333825
  18. Ge, Q., Wang, H., Rutishauser, T. and Dai, J. 2015. Phenological response to climate change in China: a meta-analysis. Global Change Biology 21(1): 265-274. https://doi.org/10.1111/gcb.12648
  19. Gonsamo, A., Chen, J.M. and Wu, C. 2013. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability. Scientific Reports 3(1): 2239. https://doi.org/10.1038/srep02239
  20. Hanninen, H. 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica 213: 1-47.
  21. Harrington, C.A., Gould, P.J., Clair, B. 2010. Modeling the effects of winter environment on dormancy release of Douglasfir. Forest Ecology and Management 259(4): 798-808. https://doi.org/10.1016/j.foreco.2009.06.018
  22. Horvath, D.P., Anderson, J.V., Chao, W.S. and Foley, M.E. 2003. Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science 8(11): 534-540. https://doi.org/10.1016/j.tplants.2003.09.013
  23. IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014 Synthesis Report. https://archive.ipcc.ch/report/ar5/syr/
  24. IPCC (Intergovernmental Panel on Climate Change). 2017. Special Report: Global Warming of 1.5℃. https://www.ipcc.ch/sr15/
  25. Jung, C. and Chon, J.-W. 2016. Quality assessment of honey from different floral origin in Korea. Korean Journal of Apiculture 31(2): 103-111. https://doi.org/10.17519/apiculture.2016.06.31.2.103
  26. Jung, C. and Lee, M.-l. 2018. Beekeeping in Korea: Past, Present, and Future Challenges. pp. 175-197. In: Chantawannakul, P., Williams G.C., Neumann, P. and Williams, G.R. (Ed.). Asian Beekeeping in the 21st Century. Springer. Singapore.
  27. Jung, J.E, Kwon, E.Y., Chung, U. and Yun, J.I. 2005. Predicting Cherry Flowering Date Using a Plant Phonology Model. Korean Journal of Agricultural and Forest Meteorology 7(2): 148-155.
  28. Kalvans, A., Bitane, M. and Kalvane, G. 2015. Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia. International Journal of Biometeorology 59(2): 165-179. https://doi.org/10.1007/s00484-014-0833-5
  29. Kim, J.-H., Cheon, J.-H. and Yun, J.I. 2013a. Outlook on blooming dates of spring flowers in the Korean Peninsula under the RCP 8.5 projected climate. Korean Journal of Agricultural and Forest Meteorology 15(1): 50-58. https://doi.org/10.5532/KJAFM.2013.15.1.050
  30. Kim, J.-H., Lee, E.-J. and Yun, J.I. 2013b. Prediction of blooming dates of spring flowers by using digital temperature forecasts and phenology models. Korean Journal of Agricultural and Forest Meteorology 15(1): 40-49. https://doi.org/10.5532/KJAFM.2013.15.1.040
  31. Kim, J.-H., Yun, E.-j., Kim, D.-j., Kang, D., Seo, B.H. and Shim, K.M. 2020. Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns. Korean Journal of Agricultural and Forest Meteorology 22(4): 268-278. https://doi.org/10.5532/KJAFM.2020.22.4.268
  32. Kim, J.-H., Kim, S.-O., Kim, D.-J., Moon, K.H. and Yun, J.I. 2015. Using daily temperature to predict phenology trends in spring flowers. Asia-Pacific Journal of Atmospheric Sciences 51(2): 167-172. https://doi.org/10.1007/s13143-015-0067-4
  33. Kohsaka, R., Park, M.S. and Uchiyama, Y. 2017. Beekeeping and honey production in Japan and South Korea: past and present. Journal of Ethnic Foods 4(2): 72-79. https://doi.org/10.1016/j.jef.2017.05.002
  34. Kwon, J.-H., Nam, E.-Y., Yun, S.-K., Kim, S.-J., Song, S.-Y., Lee, J.-H. and Hwang, K.-d. 2020. Chilling and heat requirement of peach cultivars and changes in chilling accumulation spectrums based on 100-year records in Republic of Korea Agricultural and Forest Meteorology 288-289: 108009. https://doi.org/10.1016/j.agrformet.2020.108009
  35. Lang, G., Early, J., Martin, G. and Darnell, R.L. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22(3): 371-377.
  36. Lee, H.-S., Kim, J.-H., and Yun, J.I. 2014. Recent trends in blooming dates of spring flowers and the observed disturbance in 2014. Korean Journal of Agricultural and Forest Meteorology 16(4): 396-402. https://doi.org/10.5532/KJAFM.2014.16.4.396
  37. Lee, K.-M., Kwon, W.-T. and Lee, S.-H. 2009. A study on plant phenological trends in South Korea. Journal of the Korean Association of Regional Geographers 15(3): 337-350.
  38. Linkosalo, T., Lappalainen, H.K. and Hari, P. 2008. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiology 28(12): 1873-1882. https://doi.org/10.1093/treephys/28.12.1873
  39. Liu, G.H., Chen, X.Q., Fu, Y.S. and Delpierre, N. 2019. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecological Modelling 394: 34-43. https://doi.org/10.1016/j.ecolmodel.2018.12.020
  40. Liu, Q., Fu, Y.H., Liu, Y., Janssens, I.A. and Piao, S. 2018. Simulating the onset of spring vegetation growth across the Northern Hemisphere. Global Change Biology 24(3): 1342-1356. https://doi.org/10.1111/gcb.13954
  41. Ma, Q., Huang, J.-G., Hanninen, H. and Berninger, F.J. 2018. Reduced geographical variability in spring phenology of temperate trees with recent warming. Agricultural and Forest Meteorology 256: 526-533. https://doi.org/10.1016/j.agrformet.2018.04.012
  42. Matzneller, P., Blumel, K. and Chmielewski, F.-M. 2014. Models for the beginning of sour cherry blossom. International Journal of Biometeorology 58(5): 703-715. https://doi.org/10.1007/s00484-013-0651-1
  43. Menzel, A. et al., 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12(10): 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  44. NiFoS (National Institute of Forest Science). 2016. Reduced regional variation in flowering time of Robinia pseudoacacia, and the urgent need to find alternative honey plants. https://nifos.forest.go.kr (2017. 05. 31).
  45. NiFoS (National Institute of Forest Science). 2017. The flowering period of Robinia pseudoacacia p lummeted by 50% compared to 10 years ago. https://nifos.forest.go.kr (2017. 05. 31).
  46. NIMS (National Institute of Meteorological Science). 2018. 100 Years of Climate Change on the Korean Peninsula. ISBN: 11-1360620-000132-01. http://www.nims.go.kr/?cate=1&sub_num=1087&pageNo=16
  47. Pereira, M.R., Ribeiro, H., Abreu, I., Eiras-Dias, J., Mota, T. and Cunha, Mario. 2018. Predicting the flowering date of Portuguese grapevine varieties using temperature-based phenological models: a multi-site approach. The Journal of Agricultural Science 156(7): 865-876. https://doi.org/10.1017/s0021859618000850
  48. Rea, R. and Eccel, E. 2006. Phenological models for blooming of apple in a mountainous region. International Journal of Biometeorology 51(1): 1-16. https://doi.org/10.1007/s00484-006-0043-x
  49. Roberts, A.M.I., Tansey, C., Smithers, R.J. and Phillimore, A.B. 2015. Predicting a change in the order of spring phenology in temperate forests. Global Change Biology 21(7): 2603-2611. https://doi.org/10.1111/gcb.12896
  50. Ruml, M., Korac, N., Vujadinovic, M., Vukovic, A. and Ivanisevic, D. 2016. Response of grapevine phenology to recent temperature change and variability in the wine-producing area of Sremski Karlovci, Serbia. The Journal of Agricultural Science 154(2): 186-206. https://doi.org/10.1017/S0021859615000453
  51. Shi, P., Chen, Z., Reddy, G.V.P., Hui, C., Huang, J. and Xiao, M. 2017. Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures. Agricultural and Forest Meteorology 240: 78-89. https://doi.org/10.1016/j.agrformet.2017.04.001
  52. Tanino, K.K., Kalcsits, L., Silim, S., Kendall, E. and Gray, G. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology 73(1): 49-65. https://doi.org/10.1007/s11103-010-9610-y
  53. Templ, B. et al., 2017. Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology 61(7): 1347-1358. https://doi.org/10.1007/s00484-017-1312-6
  54. Vitasse, Y., Hoch, G., Randin, C.F., Lenz, A., Kollas, C., Scheepens, J. F. and Korner, C. 2013. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171(3): 663-678. https://doi.org/10.1007/s00442-012-2580-9
  55. Vitasse, Y., Signarbieux, C. and Fu, Y. H. 2018. Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences 115(5): 1004-1008. https://doi.org/10.1073/pnas.1717342115
  56. Xiang, Y., Gubian, S., Suomela, B. and Hoeng, J. 2013. Generalized Simulated Annealing for Global Optimization: the GenSA Package. R Journal 5(1).
  57. Yu, J. et al., 2020. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. Frontiers in Plant Science 11: 180. https://doi.org/10.3389/fpls.2020.00180
  58. Yun, J.I. 2006. Climate change impact on the flowering season of Japanese cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8(2): 68-76.
  59. Yun, J. I., Choi, J.-Y. and Ahn, J.-H. (2001). Seasonal Trend of Elevation Effect on Daily Air Temp erature in Korea. Korean Journal of Agricultural and Forest Meteorology 3(2): 96-104
  60. Yun, K., Hsiao, J., Jung, M.-P., Choi, I.-T., Glenn, D.M., Shim, K.-M. and Kim, S.-H. 2017. Can a multi-model ensemble improve phenology predictions for climate change studies?. Ecological Modelling 362: 54-64. https://doi.org/10.1016/j.ecolmodel.2017.08.003