DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping

  • Chen, Guo (Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University) ;
  • Kong, Congcong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Yang, Limei (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Zhuang, Mu (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Yangyong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Wang, Yong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Ji, Jialei (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Fang, Zhiyuan (Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University) ;
  • Lv, Honghao (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
  • Received : 2021.06.04
  • Accepted : 2021.09.15
  • Published : 2021.10.01

Abstract

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.

Keywords

Acknowledgement

This research was supported by grants from the Central Public-interest Scientific Institution Basal Research Fund (Y2021XK01), the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS) and China Agriculture Research System of MOF and MARA. Races 1-6 strains were provided by Dr. Joana G. Vicente from University of Warwick, UK. Strains race 9 and XCBS was provided by Dr. Xixiang Li and Yuhong Yang from Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF-CAAS), Beijing, China, and XCC1, XCC2 and XCC4 were provided by Dr. Jungen Kang from Beijing Academy of Agriculture and Forestry Sciences, Beijing, China. We are grateful to the mentioned institutes and researchers who provided these Xcc strains. The work reported here was performed in the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. and Carniel, E. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. U. S. A. 96:14043-14048. https://doi.org/10.1073/pnas.96.24.14043
  2. Ah-You, N., Gagnevin, L., Grimont, P. A. D., Brisse, S., Nesme, X., Chiroleu, F., Ngoc, L. B. T., Jouen, E., Lefeuvre, P., Verniere, C. and Pruvost, O. 2009. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int. J. Syst. Evol. Microbiol. 59:306-318. https://doi.org/10.1099/ijs.0.65453-0
  3. Bella, P., Moretti, C., Licciardello, G., Strano, C. P., Pulvirenti, A., Alaimo, S., Zaccardelli, M., Branca, F., Buonaurio, R., Vicente, J. G. and Catara, V. 2019. Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathol. 68:278-287. https://doi.org/10.1111/ppa.12946
  4. Cruz, J., Tenreiro, R. and Cruz, L. 2017. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 99:403-414.
  5. Enright, M. C. and Spratt, B. G. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144:3049-3060. https://doi.org/10.1099/00221287-144-11-3049
  6. Fargier, E., Fischer-Le Saux, M. and Manceau, C. 2011. A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Syst. Appl. Microbiol. 34:156-165. https://doi.org/10.1016/j.syapm.2010.09.001
  7. Fargier, E. and Manceau, C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56:805-818. https://doi.org/10.1111/j.1365-3059.2007.01648.x
  8. Gao, X., Zhou, Z., Zhao, Z., Qin, H. and Huang, L. 2016. RepPCR analysis of genotypic diversity of Pseudomonas syringae pv. actinidiae strains from Shaanxi province of China. J. Fruit Sci. 33:340-349.
  9. Garces, F., Gutierrez, A. and Hoy, J. 2014. Detection and quantification of Xanthomonas albilineans by qPCR and potential characterization of sugarcane resistance to leaf scald. Plant Dis. 98:121-126. https://doi.org/10.1094/PDIS-04-13-0431-RE
  10. Goncalves, E. R. and Rosato, Y. B. 2002. Phylogenetic analysis of Xanthomonas species based upon 16S-23S rDNA intergenic spacer sequences. Int. J. Syst. Evol. Microbiol. 52:355-361. https://doi.org/10.1099/00207713-52-2-355
  11. Hauben, L., Vauterin, L., Swings, J. and Moore, E. R. 1997. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int. J. Syst. Bacteriol. 47:328-335. https://doi.org/10.1099/00207713-47-2-328
  12. Hyytia-Trees, E., Lyhs, U., Korkeala, H. and Bjorkroth, J. 1999. Characterisation of ropy slime-producing Lactobacillus sakei using repetitive element sequence-based PCR. Int. J. Food Microbiol. 50:215-219. https://doi.org/10.1016/S0168-1605(99)00104-X
  13. Jensen, B. D., Vicente, J. G., Manandhar, H. K. and Roberts, S. J. 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Dis. 94:298-305. https://doi.org/10.1094/PDIS-94-3-0298
  14. Jiang, H., Dong, H., Zhang, G., Yu, B., Chapman, L. R. and Fields, M. W. 2006. Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Appl. Environ. Microbiol. 72:3832-3845. https://doi.org/10.1128/AEM.02869-05
  15. Kong, C., Chen, G., Yang, L., Zhuang, M., Zhang, Y., Wang, Y., Ji, J., Fang, Z. and Lv, H. 2021. Germplasm screening and inheritance analysis of resistance to cabbage black rot in a worldwide collection of cabbage (Brassica oleracea var. capitata) resources. Sci. Hortic. 288:110234. https://doi.org/10.1016/j.scienta.2021.110234
  16. Lema, M., Cartea, M. E., Sotelo, T., Velasco, P. and Soengas, P. 2011. Discrimination of Xanthomonas campestris pv. campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Eur. J. Plant Pathol. 133:159-169. https://doi.org/10.1007/s10658-011-9929-5
  17. Librado, P. and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 11:1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  18. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295. https://doi.org/10.1128/aem.60.7.2286-2295.1994
  19. Lu, Y., Zhang, L. G., Hui, M. X. and Zhang, M. K. 2008. Study on pathotypes of black rot of chinese cabbage in Shaanxi Province. J. Northwest Agric. For. Univ. 10:132-138 (in Chinese).
  20. Lv, H., Fang, Z., Yang, L., Zhang, Y. and Wang, Y. 2020. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Hortic. Res. 7:34. https://doi.org/10.1038/s41438-020-0257-9
  21. Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. and Spratt, B. G. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U. S. A. 95:3140-3145. https://doi.org/10.1073/pnas.95.6.3140
  22. Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., Morrison, D., Boulnois, G. and Claverys, J.-P. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20:3479-3483. https://doi.org/10.1093/nar/20.13.3479
  23. Muhire, B., Varsani, A. and Martin, D. P. 2014. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277. https://doi.org/10.1371/journal.pone.0108277
  24. Ntambo, M. S., Meng, J.-Y., Rott, P. C., Royer, M., Lin, L.-H., Zhang, H.-L. and Gao, S.-J. 2019. Identification and characterization of Xanthomonas albilineans causing sugarcane leaf scald in China using multilocus sequence analysis. Plant Pathol. 68:269-277. https://doi.org/10.1111/ppa.12951
  25. Pammel, L. H. 1895. Bacteriosis of Rutabaga (Bacillus campestris n. sp.). Iowa State Coll. Agric. Exp. Stn. Bull. 27:130-134.
  26. Popovic, T., Mitrovic, P., Jelusic, A., Dimkic, I., Marjanovic-Jeromela, A., Nikolic, I. and Stankovic, S. 2019. Genetic diversity and virulence of Xanthomonas campestris pv. campestris isolates from Brassica napus and six Brassica oleracea crops in Serbia. Plant Pathol. 68:1448-1457. https://doi.org/10.1111/ppa.13064
  27. Rademaker, J. L. W. and De Bruijn, F. J. 1997. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis. In: DNA markers: protocols, applications and overviews, eds. By G. Caetano-Anolles and P. M. Gresshoff, pp. 151-171. John Wiley & Sons, Hoboken, NJ, USA.
  28. Rademaker, J. L., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. and de Bruijn, F. J. 2000. Comparison of AFLP and rep-PCR genomic fingerprinting with DNADNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol. 50:665-677. https://doi.org/10.1099/00207713-50-2-665
  29. Rathaur, P. S., Singh, D., Raghuwanshi, R. and Yadava, D. K. 2015. Pathogenic and genetic characterization of Xanthomonas campestris pv. campestris races based on rep-PCR and multilocus sequence analysis. J. Plant Pathol. Microbiol. 6:317.
  30. Restrepo, S., Duque, M., Tohme, J. and Verdier, V. 1999. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145:107-114. https://doi.org/10.1099/13500872-145-1-107
  31. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  32. Urwin, R. and Maiden, M. C. J. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11:479-487. https://doi.org/10.1016/j.tim.2003.08.006
  33. Versalovic, J., Koeuth, T. and Lupski, J. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823-6831. https://doi.org/10.1093/nar/19.24.6823
  34. Versalovic, J., Schneider, M., de Bruijn, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5:25-40.
  35. Vicente, J. G., Conway, J., Roberts, S. J. and Taylor, J. D. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492-499. https://doi.org/10.1094/PHYTO.2001.91.5.492
  36. Williams, P. H. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64:736-742. https://doi.org/10.1094/PD-64-736
  37. Zhang, Y., Li, P. J., Zhou, H. M. and Li, B. J. 2011. The occurrence and prevention of bacterial black rot of cruciferous vegetables by Dr. Li Baoju. China Veg. 17:23-25 (in Chinese).