DOI QR코드

DOI QR Code

NEW BOUNDS FOR FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FIELDS

  • Received : 2020.09.01
  • Accepted : 2021.07.06
  • Published : 2021.09.30

Abstract

In this paper, we present new bounds on the fundamental units of real quadratic fields ${\mathbb{Q}}({\sqrt{d}})$ using the continued fraction expansion of the integral basis element of the field. Furthermore, we apply these bounds to Dirichlet's class number formula. Consequently, we provide computational advantages to estimate the class numbers of such fields. We also give some numerical examples.

Keywords

Acknowledgement

The authors are very grateful to the referee for careful reading and many invaluable suggestions.

References

  1. T. Azuhata, On the fundamental units and the class numbers of real quadratic fields, Nagoya Math. J. 95 (1984), 125-135. https://doi.org/10.1017/S0027763000021036
  2. S. Isikay and A. Pekin, Some criteria on invariant values, Maejo Int. J. Sci. Technol. 12 (2018), 101-111.
  3. H. K. Kim, A conjecture of S. Chowla and related topics in analytic number theory, Ph. D. Thesis, The Johns Hopkins University, 1988.
  4. M. H. Le, Upper bounds for class numbers of real quadratic fields, Acta Arith. 68 (1994), no. 2, 141-144. https://doi.org/10.4064/aa-68-2-141-144
  5. S. Louboutin, Explicit upper bounds for |L(1, χ)| for primitive even Dirichlet characters, Acta Arith. 101 (2002), no. 1, 1-18. https://doi.org/10.4064/aa101-1-1
  6. R. A. Mollin and H. C. Williams, Solution of a problem of Yokoi, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 6, 141-145. http://projecteuclid.org/euclid.pja/1195512452 https://doi.org/10.3792/pjaa.66.141
  7. R. A. Mollin and H. C. Williams, A complete generalization of Yokoi's p-invariants, Colloq. Math. 63 (1992), no. 2, 285-294. https://doi.org/10.4064/cm-63-2-285-294
  8. H. L. Montgomery and P. J. Weinberger, Real quadratic fields with large class number, Math. Ann. 225 (1977), no. 2, 173-176. https://doi.org/10.1007/BF01351721
  9. O. Ramare, Approximate formulae for L(1, χ), Acta Arith. 100 (2001), no. 3, 245-266. https://doi.org/10.4064/aa100-3-2
  10. O. Ramare, Approximate formulae for L(1, χ). II, Acta Arith. 112 (2004), no. 2, 141-149. https://doi.org/10.4064/aa112-2-4
  11. S. Saad Eddin, An explicit upper bound for |L(1, χ)| when χ(2) = 1 and χ is even, Int. J. Number Theory 12 (2016), no. 8, 2299-2315. https://doi.org/10.1142/S1793042116501372
  12. T. Tatuzawa, On a theorem of Siegel, Jpn. J. Math. 21 (1951), 163-178 (1952). https://doi.org/10.4099/jjm1924.21.0_163
  13. K. Tomita, Explicit representation of fundamental units of some quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 41-43. http://projecteuclid.org/euclid.pja/1195510812 https://doi.org/10.3792/pjaa.71.41
  14. A. J. van der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328. https://doi.org/10.1090/S0025-5718-00-01234-5
  15. H. Yokoi, New invariants of real quadratic fields, in Number theory (Banff, AB, 1988), 635-639, de Gruyter, Berlin, 1990.
  16. H. Yokoi, The fundamental unit and class number one problem of real quadratic fields with prime discriminant, Nagoya Math. J. 120 (1990), 51-59. https://doi.org/10.1017/S0027763000003238
  17. H. Yokoi, The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J. 124 (1991), 181-197. https://doi.org/10.1017/S0027763000003834