DOI QR코드

DOI QR Code

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River

항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로

  • Lee, Jae Bin (Dept. of Civil Engineering, Mokpo National University) ;
  • Kim, Hye Jin (Institute of Engineering Research, Seoul National University) ;
  • Kim, Jae Hak (Geo-Spatial Information Planing Team, Geostory Inc.) ;
  • Wie, Gwang Jae (Geostory Inc.)
  • Received : 2021.07.16
  • Accepted : 2021.08.23
  • Published : 2021.08.31

Abstract

River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

하천측량은 하천기본계획 및 각종 하천 정비의 기초자료를 취득하기 위해 활용되며 하천의 물리적 형태와 하천 정비 이후의 변화를 예측하기 위해서도 활용된다. 항공수심라이다(ABL: Airborne Bathymetric LiDAR) 시스템은 그린 레이저를 사용하여 수면과 하상을 동시에 측량할 수 있는 시스템으로써 하천의 수심 및 하상 측량에 효과적으로 활용될 수 있다. 항공수심라이다 데이터를 하천 측량에 활용하기 위해서는 취득된 점군 데이터부터 수면과 하상 점들을 분리하고 추출하는 과정이 선행되어야 한다. 본 연구에서는 대표적인 지면필터링 기법인 ATIN(Adaptive Triangular Irregular Network) 알고리즘을 적용하여 항공수심라이다의 점군 데이터로부터 저수심 하천의 수면과 하상 점군을 분리하기 위한 방법론을 구축하고 제안된 방법론의 효용성을 검증하였다. 이를 위해 충청남도 곡교천 일대에서 Leica Chiroptera 4X 센서로부터 취득된 데이터를 이용하여 실험을 수행하였다. 연구결과 수면과 하상에 대한 분류 정확도는 88.8%, Kappa 계수는 0.825를 얻을 수 있었으며, 항공수심라이다 데이터를 하천측량에 효과적으로 활용할 수 있음을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 국토교통부의 재원으로 국토교통과학기술진흥원의 지원을 받아 수행된 연구임(21DPIW-C153746-03, 하천조사 및 모니터링 특화 드론 플랫폼 기반 하천관리 기술 개발)

References

  1. Andersen, M.S., Gergely, A., Al-Hamdani, Z., Steinbacher, F., Larsen, L.R., and Ernstsen, V.B. (2017), Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment, Hydrology and Earth System Science, Vol. 21, pp. 43-63. https://doi.org/10.5194/hess-21-43-2017
  2. Axelsson, P. (2000), DEM generation from laser scanner data using adaptive TIN models, International Archives of Photogrammetry and Remote Sensing, 16-23 July, Amsterdam, Netherlands, pp. 111-118.
  3. Chen, C., Guo, J., Wu, H., Li, Y., and Shi, B. (2021), Performance comparison of filtering algorithms for high-Density airborne LiDAR point clouds over complex land scapes, Remote Sensing. Vol. 13, No. 14, 2663. https://doi.org/10.3390/rs13142663
  4. Chen, Z., Gao, B., and Devereux, B. (2017), State-of-the-art: DTM generation using airborne LiDAR data, Seonsors, Vol. 17, No. 1, 150. https://doi.org/10.3390/s17010150
  5. Choi,B.G., Na,Y.W., Choo, K.H., and Lee, J.I. (2014), A study on the application of river surveying by airborne LiDAR, Journal of the Korean Society for Geospatial Information System, Vol. 22, No.2, pp. 25-32. (in Korean with English abstract) https://doi.org/10.7319/KOGSIS.2014.22.2.025
  6. Fernandez-Diaz, J.C., Glennie, C.L., Carter, W.E., Shrestha, R.L., Sartori, M.P., Singhania, A., Legleiter, C.J., and Overstreet, B.T. (2014), Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor, Applied Earth Observations and Remote Sensing, Vol. 7, No. 2, pp. 623-635. https://doi.org/10.1109/JSTARS.2013.2265255
  7. Kim, C.S. and Kim, S.J. (2020), Application example of river water depth field survey using airborne bathymetric LiDAR and multi-beam echo sounder, Water for Future, Vol. 53, No. 12, pp. 58-63. (in Korean)
  8. Kim, L. and Brian C. (2021), Extracting shallow-water bathymetry from lidar point clouds using pulse attribute data: merging density-based and machine learning approaches, Marine Geodesy, Vol. 44, No. 4, pp. 259-286. https://doi.org/10.1080/01490419.2021.1925790
  9. Kim, Y.J. and Yu,Y.G. (2020), A study for river change analysis using spatial information and drone photogrammetry, Journal of the Korea AcademiaIndustrial, Vol. 28, No. 3, pp. 29-37. (in Korean with English abstract)
  10. Korea Water Resources Association (2019), River Design Standards Commentary, Ministry of Land, Infrastructure and Transport, pp. 8-11.
  11. Landis, J.R. and Koch, G.G. (1977), The measurement of observer agreement for categorical data, Biometrics, Vol. 33, No. 1, pp. 159-174. https://doi.org/10.2307/2529310
  12. Lee, J.B., Jung, J.H., and Kim H.J. (2020), Segmentation of seabed points from airborne bathymetric LiDAR point clouds using cloth simulation filtering algorithm, Journal of the Korean Society for Geospatial Information System, Vol. 38, No. 1, pp. 1-9. (in Korean with English abstract)
  13. Lee, T.H., Lim,H.J., Yun,S.H., and Kang,J.W. (2020), Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique, Journal of Korea water resources association, Vol. 53, No. 12, pp. 1049-1057. (in Korean with English abstract) https://doi.org/10.3741/JKWRA.2020.53.12.1049
  14. Leica Geosystems (2018), Leica Chiroptera 4X Data Sheet, Leica Geosystems, https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/leica_chiroptera_ds.ashx (last date accessed: 16 July 2021).
  15. Leica Geosystems (2021), Leica LiDAR Survey Studio, Leica Geosystems, https://leica-geosystems.com/products/airborne-systems/software/leica-lidar-survey-studio (last date accessed: 16 July 2021).
  16. Mandlburger, G., Hauer, C., Wieser, M., and Pfeifer, N. (2015), Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats - A case study at the Pielach river, Remote Sensing, Vol. 7, No. 5, pp. 6160-6195. https://doi.org/10.3390/rs70506160
  17. Mandlburger, G., Pfennigbauer, M., and Pfeifer, N. (2013), Analyzing near water surface penetration in laser bathymetry - A case study at the River Pielach, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W2, 11-13 November, Antalya, Turkey, pp. 175-180.
  18. Nagle, D.B. and Wright, C.W. (2016), Algorithms used in the Airborne Lidar Processing System (ALPS), USGS Open-File Report, pp. 2016-1046.
  19. Polat, N. and Uysal, M. (2015), Investigating performance of airborne LiDAR data filtering algorithms for DTM generation, Measurement, Vol. 63, pp. 61-68. https://doi.org/10.1016/j.measurement.2014.12.017
  20. Saylam, K., Hupp, J.R., Andrews, J.R., Averett, A.R., and Knudby, A.J. (2018), Quantifying airborne lidar bathymetry quality-control measures: A case study in Frio river, Texas, Sensors, Vol. 18, No. 12, 4153. https://doi.org/10.3390/s18124153
  21. Wang, C., Li, Q., Liu, Y., Wu, G., Liu, P., and Ding, X. (2015), A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 101, pp. 22-35. https://doi.org/10.1016/j.isprsjprs.2014.11.005
  22. TerraSolid (2016), TerraScan user's guide, TerraSolid, https://www.terrasolid.com/download/tscan.pdf (last date accessed: August 1, 2019).