DOI QR코드

DOI QR Code

Synthesis of Acrylic Nonionic Reactive Emulsifier with Aromatic Ring and the Properties of Water-based Acryl Pressure Sensitive Adhesive

방향족 고리를 가지는 아크릴계 비이온 반응성 유화제 합성 및 이를 이용한 수성 점착제 물성 연구

  • Yeom, Do-Young (Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong Hwan (Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Hwang, Gaeun (Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Hwang, Do-Hoon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Jung, Yu Jin (Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
  • 염도영 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 김동환 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 황가은 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 황도훈 (부산대학교 화학과) ;
  • 정유진 (한국화학연구원 정밀화학융합기술연구센터)
  • Received : 2021.03.10
  • Accepted : 2021.03.29
  • Published : 2021.06.30

Abstract

In this study, a nonionic reactive emulsifier with aromatic and acryl group was synthesized by using polyoxyethylene(10) dodecylphenyl ether with 3-butenoic acid. The synthesized nonionic reactive emulsifier was confirmed by 1H-NMR and FT-IR. In addition, the reactive emulsifier synthesized in the preparation of aqueous acrylic adhesives base emulsion was used and the properties of the solid content, conversion, particle size distribution, peel strength and high temperature holding force were compared to those of nonionic emulsifiers without aromatic group. The particle size was distributed from 370 nm to 698 nm, and the peel strength were measured in the range of 1.507~1.802 kgf. The high temperature holding force of prepared adhesives base emulsion were measured in the range of 0.50~2.00 mm. Especially, in the result of synthesized nonionic reactive emulsifier with aromatic group, it was confirmed that high temperature holding force results were the most excellent than the case of using other nonionic reactive emulsifiers, and it can be useful for water-based acryl pressure sensitive adhesive.

본 연구에서는 polyoxyethylene(10) dodecylphenyl ether와 3-butenoic acid를 사용하여 방향족을 포함한 아크릴계 비이온 반응성 유화제를 합성하였으며, 합성된 비이온 반응성 유화제는 1H-NMR과 FT-IR로 구조를 확인하였다. 수성 아크릴 베이스 에멀젼의 제조에서 합성된 방향족을 포함한 비이온 반응성 유화제와 방향족을 포함하지 않은 비이온 반응성 유화제 및 음이온 유화제를 사용하여 고형분, 전환율, 입도분포, 박리강도와 내열유지력의 물성을 확인하였다. 입도분포의 경우 370~698 nm 범위에서 측정되었으며, 박리강도는 평균 1.507~1.802 kgf/in범위에서 측정되었다. 제조된 베이스 에멀젼의 내열유지력은 0.50~2.00 mm 범위에서 측정되었으며, 특히 합성된 방향족을 포함한 비이온 반응성 유화제를 사용한 경우, 방향족을 포함하지 않는 비이온 반응성 유화제를 사용한 경우보다 내열 유지력이 가장 뛰어남을 확인하였으며, 수성 아크릴 점착제로 유용하게 사용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의해 진행한 연구결과입니다(과제번호 : 20010915).

References

  1. S. M. Sun, M. L. Li, and A. Liu, Int. J. Adhes. Adhes., 41, 98 (2013). https://doi.org/10.1016/j.ijadhadh.2012.10.011
  2. E. Sarlin, E. Heinonen, J. Vuorinen, M. Vippola, and T. Lepisto, Int. J. Adhes. Adhes., 49, 51 (2014). https://doi.org/10.1016/j.ijadhadh.2013.12.009
  3. W. C. Dale, M. D. Paster, and J. K. Haynes, J. Adhes., 31, 1 (1989). https://doi.org/10.1080/00218468908048210
  4. A. J. Crosby and K. R. Shull, J. Polym. Sci. Part B: Polym. Phys., 37, 3455 (1999). https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3455::AID-POLB7>3.0.CO;2-3
  5. A. Ramachandran, T. H. Anderson, L. G. Leal, and J. N. Israelachvili, Langmuir, 27, 59 (2011). https://doi.org/10.1021/la1023168
  6. Z. Czech and R. Pelech, Prog. Org. Coat., 65, 84 (2009). https://doi.org/10.1016/j.porgcoat.2008.09.017
  7. H. Murakami, K. Futashima, M. Nanchi, and S. I. Kawahara, Eur. Polym. J., 47, 378 (2011). https://doi.org/10.1016/j.eurpolymj.2010.12.012
  8. Z. Czec h, A. Kowalc zyk, R. Pelec h, R. J. Wrobel, L. Shao, Y. Bai, and J. Swiderska, Int. J. Adhes. Adhes., 36, 20 (2012). https://doi.org/10.1016/j.ijadhadh.2012.04.004
  9. S. D. Tobing and A. Klein, J. Appl. Polym. Sci., 79, 2230 (2001). https://doi.org/10.1002/1097-4628(20010321)79:12<2230::AID-APP1030>3.0.CO;2-2
  10. Y. H. Choi, J. K. Kang, W. K. Lee, Journal of Adhesion and Interface, 10, 1 (2009).
  11. M. C. Park, I. S. Seo, M. C. Lee, H. S. Shin, and J. C. Lim, Polymer-Korea, 23(5), 625 (1999).
  12. H. J. Kim and D. J. Kim, J. Ind. Eng. Chem., 5, 10 (2002).
  13. 2000 New Technology Trends Report, Korean Intellectual Property Office, 2000.
  14. K. Chari, Y. S. Seo, and S. Satija, J. Phys. Chem. B, 108(31), 11442 (2004). https://doi.org/10.1021/jp049062s
  15. S. C. Biswas and D. K. Chattoraj, J. Colloid Interface Sci., 205(1), 12 (1998). https://doi.org/10.1006/jcis.1998.5574
  16. Z. Bao, W. Li, Z. Fu, and L. Chen, Polym. Renew. Resour., 7(1), 13 (2016).
  17. S. Fujii, S. Sawada, S. Nakayama, M. Kappl, K. Ueno, K. Shitajima, and Y. Nakamura, Mater. Horiz., 3, 47 (2016). https://doi.org/10.1039/C5MH00203F
  18. S. D. Tobing and A. Klein, J. Appl. Polym. Sci., 81, 2109 (2001). https://doi.org/10.1002/app.1646
  19. P. K. Rana and P. K. Sahoo, J. Appl. Polym. Sci., 106, 3915 (2007). https://doi.org/10.1002/app.27034
  20. J. Kajtna and M. Krajnc, Int. J. Adhes. Adhes., 31, 822 (2011). https://doi.org/10.1016/j.ijadhadh.2011.08.002
  21. L. Li, M. Tirrell, G. A. Korba, and A. V. Pocius, J. Adhes., 76, 307 (2001). https://doi.org/10.1080/00218460108030724
  22. N. S. Kim and S. H. Kim, J. Korean Oil Chemists' Soc., 27, 216 (2010).
  23. H. J. Youn and H. L. Lee, Journal of Korea Technical Association of the Pulp and Paper Industry, 30, 38 (1998).