DOI QR코드

DOI QR Code

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain

EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구

  • Baek, Soo-Whang (Dept. Human Intelligence and Robot Eng., Sangmyung University)
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • Received : 2021.08.10
  • Accepted : 2021.10.17
  • Published : 2021.10.31

Abstract

In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

본 연구에서는 전기 자동차(EV : Electric Vehicle) 파워트레인의 에너지 변환 특성과 설계를 수행하였다. 그리고 EV 파워트레인의 동력원으로서 영구자석 매입형 동기 모터(IPMSM : Interior Permanent Magnet Synchronous Motor)를 대상으로 하였으며 제어를 수행하였다. IPMSM을 구동하기 위해서는 두 가지 영역인 일정한 토크와 일정한 출력(약계자) 영역이 사용되며, IPMSM을 위한 제어 시스템의 설계는 d-q 레퍼런스 프레임(벡터 제어)을 바탕으로 구성하였다. IPMSM의 두 영역에서 나타나는 모터 토크의 정적 특성을 결정하기 위해 IPMSM의 토크제어 시스템과 d축 전류 제어 시스템을 제안 및 구현하였다. 특성해석을 위해서 Matlab-Simulink 소프트웨어를 사용하였다. 최종적으로 실제 차량 사양을 기준으로 EV 차량 레벨 조건으로 변경하여 파워트레인 모델에 IPMSM을 적용하였으며 제안된 제어 시스템의 시뮬레이션 결과를 수행했고 특성을 분석하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061567).

References

  1. H. Cho and W. Kim, "Sensorless control of high-speed BLDC," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 3, June. 2020, pp. 503-512. https://doi.org/10.13067/JKIECS.2020.15.3.503
  2. N. Cho, "Implementation of a senseless position controller capable of multi-turn detection in a turret servo system," J. of the Korea Institute of Electronic Communication Sciences, vol. 16. no. 1, Feb. 2021, pp. 37-44. https://doi.org/10.13067/JKIECS.2021.16.1.37
  3. J. Lim and D. Lee, "A technology trend and analysis of electric vehicle wireless charging system," J. of the Korea Institute of Electronic Communication Sciences, vol. 16. no. 2, Apr. 2021, pp. 255-260. https://doi.org/10.13067/JKIECS.2021.16.2.255
  4. J. Yang and S. Kwak, "Design of brushless DC motor speed control system for handpieces," J. of the Korea Institute of Electronic Communication Sciences, vol. 11. no. 6, June 2016, pp. 597-604. https://doi.org/10.13067/JKIECS.2016.11.6.597
  5. M. Rahman and H. Rahman, "Performance of newly developed integrated space conditioning and domestic water heating device," J. of Energy & Environment, vol. 3, no. 1, 2011, pp. 23-27.
  6. M. Kang, L. Guo, H. Wang, Z. Wang, and C. Xia, "An improved rotor cooling structure of IPMSM," In Proc. 22nd Int. Conf. on Electrical Machines and Systems (ICEMS), Harbin, China, Aug. 2019, pp. 1-6.
  7. J. Kim, "A study on the optimum selection of the power factor compensation condenser according to the improved efficiency of induction motor," The Trans. of the Korean Institute of Electrical Engineers, vol. 65, no. 7, July 2016, pp. 1311-1315. https://doi.org/10.5370/KIEE.2016.65.7.1311
  8. G. Du, W. Cao, S. Hu, Z. Lin, and T. Yuan, "Design and assessment of an electric vehicle powertrain model based on real-world driving and charging cycles," IEEE Trans. Vehicular Technology, vol. 68, no. 2, Feb. 2019, pp. 1178-1187. https://doi.org/10.1109/tvt.2018.2884812
  9. R. Cheng, T. Rodemann, M. Fischer, M. Olhofer, and Y. Jin, "Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation," IEEE Trans. Emerging Topics in Computational Intelligence, vol. 1, no. 2, Apr. 2017, pp. 97-111. https://doi.org/10.1109/TETCI.2017.2669104
  10. K. Zhou, M. Ai, D. Sun, N. Jin, and X. Wu, "Field weakening operation control strategies of PMSM based on feedback linearization," Energies, vol. 12, no. 23, 2019, pp. 1-18.
  11. L. Wei, L. Hui, and W. Chao, "Study on flux-weakening control based on single current regulator for PMSM," In Proc. IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014, pp. 1-3.