DOI QR코드

DOI QR Code

The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut

  • Guleryuz, Aysegul (Department of Prosthodontics, Faculty of Dentistry, Erciyes University) ;
  • Korkmaz, Cumhur (Department of Prosthodontics, Faculty of Dentistry, University of Health Sciences) ;
  • Sener, Ayse (Republic of Turkey Ministry of Health) ;
  • Tas, Mehmet Ozan (Department of Prosthodontics, Faculty of Dentistry, Erciyes University)
  • Received : 2021.06.18
  • Accepted : 2021.10.18
  • Published : 2021.10.30

Abstract

PURPOSE. Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue. MATERIALS AND METHODS. PEEK clasps (N = 48) with thicknesses of 1 or 1.50 mm and 48 premolar monolithic zirconia crowns with undercuts of 0.25 mm or 0.50 mm were fabricated. Samples are divided into four groups (C1-C4) and were subjected to 7200 thermal aging cycles (at 5 - 55℃). The changes in the retentive force and dimensions of the clasps were measured by micro-stress testing and micro-CT devices from five measurement points (M1 - M5). One-way ANOVA, paired t-test, two-way repeated ANOVA, and post-hoc tests were used to analyze the data (P < .05). RESULTS. The retentive forces of C1, C2, C3, and C4 groups in initial and final test were found to be 4.389-3.388 N, 4.67 - 3.396 N, 5.161 - 4.096 N, 5.459 - 4.141 N, respectively. The effects of retentive force of all PEEK clasps groups were significant decreased. Thermo-mechanical cycles caused significant dimensional changes at points with M2, M4, and M5, and abraded the clasp corners and increased the distance between the ends of the clasp, resulting in reduced retentive forces (P* = .016, P* = .042, P < .001, respectively). CONCLUSION. Thermo-mechanical aging decreases the retentive forces in PEEK clasps. Increasing the thickness and undercut amount of clasps decreases the amount of dimensional change. The values measured after aging are within the clinically acceptable limits.

Keywords

References

  1. Donovan TE, Derbabian K, Kaneko L, Wright R. Esthetic considerations in removable prosthodontics. J Esthet Restor Dent 2001;13:241-53. https://doi.org/10.1111/j.1708-8240.2001.tb00270.x
  2. Vallittu PK, Kokkonen M. Deflection fatigue of cobalt-chromium, titanium, and gold alloy cast denture clasp. J Prosthet Dent 1995;74:412-9. https://doi.org/10.1016/S0022-3913(05)80384-1
  3. Lee JJ, Song KY, Ahn SG, Choi JY, Seo JM, Park JM. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity. J Adv Prosthodont 2015;7:172-7. https://doi.org/10.4047/jap.2015.7.2.172
  4. Mayinger F, Micovic D, Schleich A, Roos M, Eichberger M, Stawarczyk B. Retention force of polyetheretherketone and cobalt-chrome-molybdenum removable dental prosthesis clasps after artificial aging. Clin Oral Invest 2021;25:3141-9. https://doi.org/10.1007/s00784-020-03642-5
  5. Schwitalla AD, Spintig T, Kallage I, Muller WD. Flexural behavior of PEEK materials for dental application. Dent Mater 2015;31:1377-84. https://doi.org/10.1016/j.dental.2015.08.151
  6. Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 1990;24:207-15. https://doi.org/10.1002/jbm.820240207
  7. Wimmer T, Huffmann AM, Eichberger M, Schmidlin PR, Stawarczyk B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: effect of specimen geometries, antagonist materials and test set-up configuration. Dent Mater 2016;32:e127-36. https://doi.org/10.1016/j.dental.2016.03.005
  8. Wiesli MG, Ozcan M. High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dent 2015;24:448-57. https://doi.org/10.1097/ID.0000000000000285
  9. Peng TY, Ogawa Y, Akebono H, Iwaguro S, Sugeta A, Shimoe S. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures. J Prosthodont Res 2020;64:250-6. https://doi.org/10.1016/j.jpor.2019.07.012
  10. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M. The use of PEEK in digital prosthodontics: A narrative review. BMC Oral Health 2020;20:217. https://doi.org/10.1186/s12903-020-01202-7
  11. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60:12-9. https://doi.org/10.1016/j.jpor.2015.10.001
  12. Zoidis P, Papathanasiou I, Polyzois G. The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. a clinical report. J Prosthodont 2016;25:580-4. https://doi.org/10.1111/jopr.12325
  13. Tannous F, Steiner M, Shahin R, Kern M. Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent Mater 2012;28:273-8. https://doi.org/10.1016/j.dental.2011.10.016
  14. Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The role of polyether ether ketone (peek) in dentistry - a review. J Med Life 2019;12:5-9. https://doi.org/10.25122/jml-2019-0003
  15. Morris HF, Asgar K, Brudvik JS, Winkler S, Roberts EP. Stress-relaxation testing. Part IV: Clasp pattern dimensions and their influence on clasp behavior. J Prosthet Dent 1983;50:319-26. https://doi.org/10.1016/S0022-3913(83)80084-5
  16. Chrystie JA. Principles of clasp retention: a review. Aust Dent J 1988;33:96-100. https://doi.org/10.1111/j.1834-7819.1988.tb00648.x
  17. Mahmoud A, Wakabayashi N, Takahashi H, Ohyama T. Deflection fatigue of Ti-6Al-7Nb, Co-Cr, and gold alloy cast clasps. J Prosthet Dent 2005;93:183-8. https://doi.org/10.1016/j.prosdent.2004.11.011
  18. Vallittu PK, Miettinen T. Duration of induction melting of cobalt-chromium alloy and its effect on resistance to deflection fatigue of cast denture clasps. J Prosthet Dent 1996;75:332-6. https://doi.org/10.1016/S0022-3913(96)90493-X
  19. Vallittu PK, Kokkonen M. Deflection fatigue of cobalt-chromium, titanium, and gold alloy cast denture clasp. J Prosthet Dent 1995;74:412-9. https://doi.org/10.1016/S0022-3913(05)80384-1
  20. de Faria Vasconcelos K, Dos Santos Corpas L, da Silveira BM, Laperre K, Padovan LE, Jacobs R, de Freitas PH, Lambrichts I, Boscolo FN. MicroCT assessment of bone microarchitecture in implant sites reconstructed with autogenous and xenogenous grafts: a pilot study. Clin Oral Implants Res 2017;28:308-13.
  21. Eroglu Z, Gurbulak AG. Fatigue behavior of zirconia-ceramic, galvano-ceramic, and porcelain-fusedto-metal fixed partial dentures. J Prosthodont 2013;22:516-22. https://doi.org/10.1111/jopr.12059
  22. Kumbuloglu O, Ozkan YK, Arda T, Ozcan M. Retention and deformation of cobalt-chromium and high-impact polyamide clasps. Meandros Med Dent J 2018;19:25-31. https://doi.org/10.4274/meandros.33043
  23. Jiang N, Gao WM, Zhang H, Zheng DX. Effects of clasp retention forces and abrasion on different cast crowns. J Prosthet Dent 2014;111:493-8. https://doi.org/10.1016/j.prosdent.2013.07.025
  24. Cheng H, Xu M, Zhang H, Wu W, Zheng M, Li X. Cyclic fatigue properties of cobalt-chromium alloy clasps for partial removable dental prostheses. J Prosthet Dent 2010;104:389-96. https://doi.org/10.1016/S0022-3913(10)60173-4
  25. Paek J, Noh K, Pae A, Lee H, Kim HS. Fabrication of a CAD/CAM monolithic zirconia crown to fit an existing partial removable dental prosthesis. J Adv Prosthodont 2016;8:329-32. https://doi.org/10.4047/jap.2016.8.4.329
  26. Pereira JR, do Valle AL, Shiratori FK, Ghizoni JS, Bonfante EA. The effect of post material on the characteristic strength of fatigued endodontically treated teeth. J Prosthet Dent 2014;112:1225-30. https://doi.org/10.1016/j.prosdent.2014.03.014
  27. Arda T, Arikan A. An in vitro comparison of retentive force and deformation of acetal resin and cobalt-chromium clasps. J Prosthet Dent 2005;94:267-74. https://doi.org/10.1016/j.prosdent.2005.06.009
  28. Lumkemann N, Eichberger M, Stawarczyk B. Bonding to different PEEK compositions: the Impact of Dental Light Curing Units. Materials (Basel) 2017;10:67. https://doi.org/10.3390/ma10010067
  29. Turcosa Analytics Ltd. Co., Kayseri, Turkey. [Accessed 14 February, 2021]. Available at: https://www.turcosa.com.tr
  30. Davenport JC, Basker RM, Heath JR, Ralph JP, Glantz PO. Retention. Br Dent J 2000;189:646-57. https://doi.org/10.1038/sj.bdj.4800854a
  31. Bridgeman JT, Marker VA, Hummel SK, Benson BW, Pace LL. Comparison of titanium and cobalt-chromium removable partial denture clasps. J Prosthet Dent 1997;78:187-93. https://doi.org/10.1016/S0022-3913(97)70124-0
  32. Kim D, Park C, Yi Y, Cho L. Comparison of cast Ti-Ni alloy clasp retention with conventional removable partial denture clasps. J Prosthet Dent 2004;91:374-82. https://doi.org/10.1016/j.prosdent.2004.02.015
  33. Osada H, Shimpo H, Hayakawa T, Ohkubo C. Influence of thickness and undercut of thermoplastic resin clasps on retentive force. Dent Mater J 2013;32:381-9. https://doi.org/10.4012/dmj.2012-284
  34. Koike M, Chan KS, Hummel SK, Mason RL, Okabe T. Fatigue life of cast titanium alloys under simulated denture framework displacements. Metall Mater Trans A Phys Metall Mater Sci 2013;44:1034-44. https://doi.org/10.1007/s11661-012-1447-3
  35. de Torres EM, de Siqueira Damasceno II, do Amaral BA, Rodrigues RC, Carreiro Ada F, Ribeiro RF. Effect of acetyl resin retentive arms on the retentive force of circumferential clasps: an in vitro study. J Prosthodont Res 2012;56:216-21. https://doi.org/10.1016/j.jpor.2011.09.003
  36. Carr AB, Brown DT. McCracken's removable partial prosthodontics. 11th ed., Mosby, St Louis; 2005. p. 25-31.
  37. Henriques GEP, Consani S, Rollo JMD de A, Andrade e Silva F. Soldering and remelting influence on fatigue strength of cobalt-chromium alloys. J Prosthet Dent 1997;78:146-52. https://doi.org/10.1016/S0022-3913(97)70118-5
  38. Souza JE, Silva NR, Coelho PG, Zavanelli AC, Ferracioli RC, Zavanelli RA. Retention strength of cobalt-chromium vs nickel-chromium titanium vs CP titanium in a cast framework association of removable partial overdenture. J Contemp Dent Pract 2011;12:179-86. https://doi.org/10.5005/jp-journals-10024-1031
  39. Kim SY, Shin SY, Lee JH. Effect of cyclic bend loading on a cobalt-chromium clasp fabricated by direct metal laser sintering. J Prosthet Dent 2018;119:1027.e1-7. https://doi.org/10.1016/j.prosdent.2018.03.016
  40. Sato Y, Tsuga K, Abe Y, Asahara S, Akagawa Y. Analysis of stiffness and stress in I-bar clasps. J Oral Rehabil 2001;28:596-600. https://doi.org/10.1046/j.1365-2842.2001.00600.x
  41. Wagner B, Kern M. Clinical evaluation of removablepartial dentures 10 years after insertion: success rates, hygienic problems, and technical failures. Clin Oral Investig 2000;4:74-80. https://doi.org/10.1007/s007840050119
  42. Boerckel JD, Mason DE, McDermott AM, Alsberg E. Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res Ther 2014;5:144. https://doi.org/10.1186/scrt534
  43. Marie A, Keeling A, Hyde TP, Nattress BR, Pavitt S, Murphy RJ, Shary TJ, Dillon S, Osnes C, Wood DJ. Deformation and retentive force following in vitro cyclic fatigue of cobalt-chrome and aryl ketone polymer (AKP) clasps. Dent Mater 2019;35:e113-21. https://doi.org/10.1016/j.dental.2019.02.028