DOI QR코드

DOI QR Code

The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics

  • 투고 : 2021.06.01
  • 심사 : 2021.10.18
  • 발행 : 2021.10.30

초록

PURPOSE. The aim of this in vitro study was to evaluate the effect of silane and universal adhesive applications on the micro-shear bond strength (µSBS) of different resin-matrix ceramics (RMCs). MATERIALS AND METHODS. A total of 120 slides (14 × 12 × 1 mm) were produced from 5 different RMC materials (GC Cerasmart [GC]; Brilliant Crios [BC]; Grandio blocs [GB]; Katana Avencia [KA]; and KZR-CAD HR 2 [KZR]) and sandblasted using 50 ㎛ Al2O3 particles. Each RMC material was divided into six groups according to the surface conditioning (SC) method as follows: control (G1), silane primer (G2), silane-free universal adhesive (G3), silane-containing universal adhesive (G4), silane primer and silane-free universal adhesive (G5), and silane primer and silane-containing universal adhesive (G6). Three cylindric specimens made from resin cement (Bifix QM) were polymerized over the treated surface of each slide (n = 12). After thermal cycling (10000 cycles, 5 - 55℃), µSBS test was performed and failure types were evaluated using a stereomicroscope. Data were analyzed using 2-way ANOVA and Tukey tests (α = .05). RESULTS. µSBS values of specimens were significantly affected by the RMC type and SC protocols (P < .001) except the interaction (P = .119). Except for G2, all SC protocols showed a significant increase in µSBS values (P < .05). For all RMCs, the highest µSBS values were obtained in G4 and G6 groups. CONCLUSION. Only silane application did not affect the µSBS values regardless of the RMC type. Moreover, the application of a separate silane in addition to the universal adhesives did not improve the µSBS values. Silane-containing universal adhesive was found to be the best conditioning method for RMCs.

키워드

참고문헌

  1. Gunal B, Ulusoy MM. Optical properties of contemporary monolithic CAD-CAM restorative materials at different thicknesses. J Esthet Restor Dent 2018;30:434-41. https://doi.org/10.1111/jerd.12382
  2. Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 2014;58:208-16. https://doi.org/10.1016/j.jpor.2014.07.003
  3. Blatz MB, Conejo J. The current state of chairside digital dentistry and materials. Dent Clin North Am 2019;63:175-97. https://doi.org/10.1016/j.cden.2018.11.002
  4. Lucsanszky IJR, Ruse ND. Fracture toughness, flexural strength, and flexural modulus of new CAD/CAM resin composite blocks. J Prosthodont 2020;29:34-41. https://doi.org/10.1111/jopr.13123
  5. Barutcigil K, Barutcigil C, Kul E, Ozarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont 2019;28:71-8. https://doi.org/10.1111/jopr.12574
  6. Jorquera G, Mahn E, Sanchez JP, Berrera S, Prado MJ, Bernasconi V. Hybrid ceramics in dentistry: a literature review. J Clin Res Dent 2018;1:1-5.
  7. Kurtulmus-Yilmaz S, Cengiz E, Ongun S, Karakaya I. The effect of surface treatments on the mechanical and optical behaviors of CAD/CAM restorative materials. J Prosthodont 2019;28:e496-503. https://doi.org/10.1111/jopr.12749
  8. Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 2012;28:529-34. https://doi.org/10.1016/j.dental.2011.12.003
  9. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015;114:587-93. https://doi.org/10.1016/j.prosdent.2015.04.016
  10. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015;28:227-35. https://doi.org/10.11607/ijp.4244
  11. Gunal Abduljalil B, Ongun S, Onoral O. How will surface conditioning methods influence the translucency and color properties of CAD-CAM resin-matrix ceramics with different thicknesses? J Esthet Restor Dent 2021;33:925-34. https://doi.org/10.1111/jerd.12667
  12. Mainjot A. Recent advances in composite CAD/CAM blocks. Int J Esthet Dent 2016;11:275-80.
  13. Awad MM, Albedaiwi L, Almahdy A, Khan R, Silikas N, Hatamleh MM, Alkhtani FM, Alrahlah A. Effect of universal adhesives on microtensile bond strength to hybrid ceramic. BMC Oral Health 2019;19:1-7. https://doi.org/10.1186/s12903-018-0701-5
  14. Cengiz-Yanardag E, Kurtulmus Yilmaz S, Karakaya I, Ongun S. Effect of different surface treatment methods on micro-shear bond strength of CAD-CAM restorative materials to resin cement. J Adhes Sci Technol 2018;33:110-23. https://doi.org/10.1080/01694243.2018.1514992
  15. Harorli OT, Barutcugil C, Kirmali O, Kapdan A. Shear bond strength of a self-etched resin cement to an indirect composite: effect of different surface treatments. Niger J Clin Pract 2015;18:405-10. https://doi.org/10.4103/1119-3077.151783
  16. Soares CJ, Soares PV, Pereira JC, Fonseca RB. Surface treatment protocols in the cementation process of ceramic and laboratory-processed composite restorations: a literature review. J Esthet Restor Dent 2005;17:224-35. https://doi.org/10.1111/j.1708-8240.2005.tb00119.x
  17. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 2014;26:382-93. https://doi.org/10.1111/jerd.12100
  18. Emsermann I, Eggmann F, Krastl G, Weiger R, Amato J. Influence of pretreatment methods on the adhesion of composite and polymer infiltrated ceramic CADCAM blocks. J Adhes Dent 2019;21:433-43.
  19. Reymus M, Roos M, Eichberger M, Edelhoff D, Hickel R, Stawarczyk B. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. Clin Oral Investig 2019;23:529-38. https://doi.org/10.1007/s00784-018-2461-7
  20. Tekce N, Tuncer S, Demirci M, Kara D, Baydemir C. Microtensile bond strength of CAD/CAM resin blocks to dual-cure adhesive cement: the effect of different sandblasting procedures. J Prosthodont 2019;28:e485-90. https://doi.org/10.1111/jopr.12737
  21. Wu X, Xie H, Meng H, Yang L, Chen B, Chen Y, Chen C. Effect of tribochemical silica coating or multipurpose products on bonding performance of a CAD/CAM resin-based material. J Mech Behav Biomed Mater 2019;90:417-25. https://doi.org/10.1016/j.jmbbm.2018.10.034
  22. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent 2014;16:531-40. https://doi.org/10.3290/j.jad.a33198
  23. Demirtag Z, Culhaoglu AK. Surface roughness of ceramic-resin composites after femtosecond laser irradiation, sandblasting or acid etching and their bond strength with and without silanization to a resin cement. Oper Dent 2019;44:156-67. https://doi.org/10.2341/17-391-l
  24. Yano HT, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding. J Mech Behav Biomed Mater 2020;101:103441. https://doi.org/10.1016/j.jmbbm.2019.103441
  25. Celik E, Sahin SC, Dede DO. Shear bond strength of nanohybrid composite to the resin matrix ceramics after different surface treatments. Photomed Laser Surg 2018;36:424-30. https://doi.org/10.1089/pho.2018.4467
  26. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent 2014;16:531-40 https://doi.org/10.3290/j.jad.a33198
  27. Filho AM, Vieira LC, Araujo E, Monteiro Junior S. Effect of different ceramic surface treatments on resin microtensile bond strength. J Prosthodont 2004;13:28-35. https://doi.org/10.1111/j.1532-849X.2004.04007.x
  28. Ozcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 2003;19:725-31. https://doi.org/10.1016/S0109-5641(03)00019-8
  29. Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent 2006;95:430-6. https://doi.org/10.1016/j.prosdent.2006.03.016
  30. Colares RC, Neri JR, Souza AM, Pontes KM, Mendonca JS, Santiago SL. Effect of surface pretreatments on the microtensile bond strength of lithium-disilicate ceramic repaired with composite resin. Braz Dent J 2013;24:349-52. https://doi.org/10.1590/0103-6440201301960
  31. Corazza PH, Cavalcanti SC, Queiroz JR, Bottino MA, Valandro LF. Effect of post-silanization heat treatments of silanized feldspathic ceramic on adhesion to resin cement. J Adhes Dent 2013;15:473-9. https://doi.org/10.3290/j.jad.a29592
  32. Shinohara A, Taira Y, Sawase T. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite. Odontology 2017;105:437-42. https://doi.org/10.1007/s10266-016-0288-8
  33. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  34. Yoshihara K, Nagaoka N, Sonoda A, Maruo Y, Makita Y, Okihara T, Irie M, Yoshida Y, Van Meerbeek B. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives. Dent Mater 2016;32:1218-25. https://doi.org/10.1016/j.dental.2016.07.002
  35. Yao C, Yu J, Wang Y, Tang C, Huang C. Acidic pH weakens the bonding effectiveness of silane contained in universal adhesives. Dent Mater 2018;34:809-18. https://doi.org/10.1016/j.dental.2018.02.004
  36. Soderholm KJ, Shang SW. Molecular orientation of silane at the surface of colloidal silica. J Dent Res 1993;72:1050-4. https://doi.org/10.1177/00220345930720061001
  37. Queiroz JR, Benetti P, Ozcan M, de Oliveira LF, Della Bona A, Takahashi FE, Bottino MA. Surface characterization of feldspathic ceramic using ATR FT-IR and ellipsometry after various silanization protocols. Dent Mater 2012;28:189-96. https://doi.org/10.1016/j.dental.2011.10.009
  38. Yao C, Zhou L, Yang H, Wang Y, Sun H, Guo J, Huang C. Effect of silane pretreatment on the immediate bonding of universal adhesives to computer-aided design/computer-aided manufacturing lithium disilicate glass ceramics. Eur J Oral Sci 2017;125:173-80. https://doi.org/10.1111/eos.12340
  39. Munoz MA, Baggio R, Mendes YB, Gomes GM, LuqueMartinez I, Loguercio AD, Reis A. The effect of the loading method and cross-head speed on resin-dentin microshear bond strength. Int J Adhes Adhes 2014;50:136-41. https://doi.org/10.1016/j.ijadhadh.2014.01.024
  40. Yoshihara K, Nagaoka N, Maruo Y, Nishigawa G, Irie M, Yoshida Y, Van Meerbeek B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent Mater 2017;33:e124-35. https://doi.org/10.1016/j.dental.2016.12.003
  41. Yang B, Wolfart S, Scharnberg M, Ludwig K, Adelung R, Kern M. Influence of contamination on zirconia ceramic bonding. J Dent Res 2007;86:749-53. https://doi.org/10.1177/154405910708600812
  42. Celik E, Sahin SC, Dede DO. Shear bond strength of nanohybrid composite to the resin matrix ceramics after different surface treatments. Photomed Laser Surg 2018;36:424-30. https://doi.org/10.1089/pho.2018.4467
  43. Rohr N, Flury A, Fischer J. Efficacy of a universal adhesive in the bond strength of composite cements to polymer-infiltrated ceramic. J Adhes Dent 2017;19:417-24.
  44. Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: a review. Dent Mater 2018;34:13-28. https://doi.org/10.1016/j.dental.2017.09.002
  45. Cura M, Gonzalez-Gonzalez I, Fuentes V, Ceballos L. Effect of surface treatment and aging on bond strength of composite resin onlays. J Prosthet Dent 2016;116:389-96. https://doi.org/10.1016/j.prosdent.2016.02.016
  46. Gilbert S, Keul C, Roos M, Edelhoff D, Stawarczyk B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods. Clin Oral Investig 2016;20:227-36. https://doi.org/10.1007/s00784-015-1494-4
  47. Shinohara A, Taira Y, Sakihara M, Sawase T. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system. J Appl Oral Sci 2018;26:e20170342. https://doi.org/10.1590/1678-7757-2017-0342
  48. Miyazaki M, Tsujimoto A, Tsubota K, Takamizawa T, Kurokawa H, Platt JA. Important compositional characteristics in the clinical use of adhesive systems. J Oral Sci 2014;56:1-9. https://doi.org/10.2334/josnusd.56.1
  49. Chen Y, Lu Z, Qian M, Zhang H, Xie H, Chen C. Effect of 10-methacryloxydecyl dihydrogen phosphate concentration on chemical coupling of methacrylate resin to yttria-stabilized zirconia. J Adhes Dent 2017;19:349-55.
  50. Eldafrawy M, Ebroin MG, Gailly PA, Nguyen JF, Sadoun MJ, Mainjot AK. Bonding to CAD-CAM composites: an interfacial fracture toughness approach. J Dent Res 2018;97:60-7. https://doi.org/10.1177/0022034517728714
  51. Frankenberger R, Hartmann VE, Krech M, Kramer N, Reich S, Braun A, Roggendorf M. Adhesive luting of new CAD/CAM materials. Int J Comput Dent 2015;18:9-20.
  52. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93:1232-4. https://doi.org/10.1177/0022034514553976
  53. Chen MH. Update on dental nanocomposites. J Dent Res 2010;89:549-60. https://doi.org/10.1177/0022034510363765
  54. Hibino Y, Nagasawa Y, Eda Y, Shigeta H, Nakajima H. Effect of storage conditions on mechanical properties of resin composite blanks for CAD/CAM crowns. Dent Mater J 2020;39:742-51. https://doi.org/10.4012/dmj.2019-202
  55. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 1998;42:465-72. https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
  56. Placido E, Meira JB, Lima RG, Muench A, de Souza RM, Ballester RY. Shear versus micro-shear bond strength test: a finite element stress analysis. Dent Mater 2007;23:1086-92. https://doi.org/10.1016/j.dental.2006.10.002
  57. Andrade AM, Garcia E, Moura SK, Reis A, Loguercio A, Silva LM, Pimentel GH, Grande RH. Do the microshear test variables affect the bond strength values? Int J Dent 2012;2012:618960. https://doi.org/10.1155/2012/618960
  58. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of "micro" bond strength test methods. Dent Mater 2010;26:e50-62.
  59. Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strength results of the different test methods: a critical literature review. Dent Mater 2010;26:e78-93. https://doi.org/10.1016/j.dental.2009.12.002