DOI QR코드

DOI QR Code

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application

전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막

  • Moon, Ha-Nuel (Department of Green Chemical Engineering, Sangmyung University) ;
  • Song, Hyeon-Bee (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 문하늘 (상명대학교 그린화학공학과) ;
  • 송현비 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2021.10.18
  • Accepted : 2021.10.27
  • Published : 2021.10.31

Abstract

All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.

전 바나듐 레독스 흐름 전지(VRFB)는 유망한 대용량 에너지 저장 기술 중 하나이다. 이온교환막은 VRFB의 충·방전 성능 및 내구성을 좌우하는 핵심 구성 요소이다. 본 연구에서는 기존 탄화수소계 이온교환막의 단점을 보완하기 위해 우수한 물리적 및 화학적 안정성을 갖는 다공성 폴리테트라플루오로에틸렌(PTFE) 지지체의 세공에 불소부가 포함된 탄화수소계 이오노머를 충진하는 방식으로 세공충진 음이온교환막(PFAEMs)을 제조하였다. 얇은 다공성 PTFE 지지체의 사용으로 전기적 저항을 현저히 낮출 수 있었으며 PTFE 지지체의 사용과 더불어 충진 이오노머에 불소부를 도입함으로써 막의 산화 안정성을 크게 향상시킬 수 있었다. 충·방전 성능 평가 결과, PFAEM에 불소부의 함량이 증가할수록 높은 전류 효율을 나타내었으며 낮은 전기적 저항으로 상용막 대비 우수한 전압 효율 및 에너지 효율을 보였다. 또한, 산화 안정성 및 충·방전성능의 관점에서 소수성 PTFE 지지체의 사용이 더 바람직함을 확인하였다.

Keywords

Acknowledgement

본 연구는 2020학년도 상명대학교 교내연구비를 지원받아 수행하였음.

References

  1. C. Ponce de Leon, A. Frias-Ferrer, J. GonzalezGarcia, D. A. Szanto, and F. C. Walsh, "Redox flow cells for energy conversion", J. Power Sources, 160, 716 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. V. Fernao Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, and J. F. Martins, "Power converter interfaces for electrochemical energy storage systems - A review", Energy Convers. Manag., 86, 453 (2014). https://doi.org/10.1016/j.enconman.2014.05.003
  3. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Haijmolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, R55 (2011). https://doi.org/10.1149/1.3599565
  4. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: a review", J. Appl. Electrochem., 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
  5. J. P. Barton and D. G. Infield, "Energy storage and its use with intermittent renewable energy", IEEE Trans. Energy Conversion, 19, 441 (2004). https://doi.org/10.1109/TEC.2003.822305
  6. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19, 291 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
  7. G-J. Hwang, A-S. Kang, and H. Ohya, "Review of the redox-flow secondary battery", Chem. Industry and Technology, 16, 455 (1998).
  8. A. A. Shah, H. Al-Fetlawi, and F. C. Walsh, "Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery", Electrochim. Acta, 55, 1125 (2010). https://doi.org/10.1016/j.electacta.2009.10.022
  9. X. Ma, H. Zhang, and F. Xing, "A three-dimensional model for negative half cell of the vanadium redox flow battery", Electrochim. Acta, 58, 238 (2011). https://doi.org/10.1016/j.electacta.2011.09.042
  10. M. Rychick and M. Skyllas-Kazacos, "Characteristics of a new all-vanadium redox flow battery", J. Power Sources, 22, 59 (1988). https://doi.org/10.1016/0378-7753(88)80005-3
  11. P. Alotto, M. Guarnieri, and F. Moro, "Redox flow batteries for the storage of renewable energy: A review", Renew. Sustain. Energy Rev., 29, 325 (2014). https://doi.org/10.1016/j.rser.2013.08.001
  12. C.-H. Bae, E. P. L Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002). https://doi.org/10.1016/S0013-4686(02)00649-7
  13. M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 27, 219 (1989). https://doi.org/10.1016/0378-7753(89)80037-0
  14. J. Noack, N. Roznyatovskaya, T. Herr, and P. Fischer, "The chemistry of redox-flow batteries", Angew. Chem. Int. Ed., 54, 9775 (2015).
  15. S. C. Chieng, M. Kazacos, and M. Skyllas-Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery applications", J. Power Sources, 39, 11 (1992). https://doi.org/10.1016/0378-7753(92)85002-R
  16. T. Mohammadi, M. Skyllas-Kazacos, "Modification of anion-exchange membranes for vanadium redox flow battery applications", J. Power Sources, 63, 179 (1996). https://doi.org/10.1016/S0378-7753(96)02463-9
  17. T. Mohammadi, M. Skyllas-Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  18. D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013). https://doi.org/10.1021/am401858r
  19. P. Costamagna, S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects", J. Power Sources, 102, 242 (2001). https://doi.org/10.1016/S0378-7753(01)00807-2
  20. X. Li, X. Hao, D. Xu, G. Zhang, S. Zhong, H. Na, and D. Wang, "Fabrication of sulfonated poly (ether ether ketone ketone) membranes with high proton conductivity", J. Membr. Sci., 281, 1 (2006). https://doi.org/10.1016/j.memsci.2006.06.002
  21. X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao, "Electrochemical properties of sulfonated PEEK used for ion exchange membranes", J. Membr. Sci., 254, 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051
  22. X. Li, G. Zhang, D. Xu, C. Zhao, and H. Na, "Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes", J. Power Sources, 165, 701 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.011
  23. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. Mc Grath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  24. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  25. S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013). https://doi.org/10.1016/j.memsci.2012.11.027
  26. W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, "Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 208, 421 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
  27. X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
  28. K. Naoi, E. Iwama, N. Ogihara, Y. Nakamura, H. Segawa, and Y. Ino, "Nonflammable hydrofluoroether for lithium-ion batteries: Enhanced rate capability, cyclability, and low-temperature performance", J. Electrochem. Soc., 156, A272 (2009). https://doi.org/10.1149/1.3073552
  29. T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries", J. Electrochem. Soc., 157, A707 (2010). https://doi.org/10.1149/1.3377084
  30. N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries", J. Power Sources, 221, 6, (2013). https://doi.org/10.1016/j.jpowsour.2012.07.121
  31. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, "Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery", Sci. Adv., 4, 1 (2018).
  32. L. Gomez-Coma, V. M. Ortiz-Martinez, J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019). https://doi.org/10.1016/j.memsci.2019.117385
  33. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129
  34. G. Ruppert, R. Bauer, and G. Heisler, "The photo-Fenton reaction - an effective photochemical wastewater treatment process", J. Photochem. Photobiol. A: Chem., 73, 75 (1993). https://doi.org/10.1016/1010-6030(93)80035-8
  35. Z. Palaty, and H. Bendova, "Numerical effort analysis of mass transfer measurements in batch dialyzer", Desalin. Water Treat. 26, 215 (2011). https://doi.org/10.5004/dwt.2011.1492
  36. D-H. Kim, Y-E. Choi, J-S. Park, and M-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta, 295, 164 (2019). https://doi.org/10.1016/j.electacta.2018.10.124
  37. Z. Wang, J. Parrondo, S. Sankarasubramanian, K. Bhattacharyya, M. Ghosh, and V. Ramani, "Alkaline stability of pure aliphatic-based anion exchange membranes containing cycloaliphatic quaternary ammonium cations", J. Electrochem. Soc., 167, 124504 (2020). https://doi.org/10.1149/1945-7111/abac29
  38. S. Lee, H. Lee, T.-H. Yang, B. Bae, N. A. T. Tran, Y. Cho, N. Jung, and D. Shin, "Quaternary ammonium-bearing perfluorinated polymers for anion exchange membrane applications", Membranes, 10, 306 (2020). https://doi.org/10.3390/membranes10110306
  39. S. Ghosh, K. Dhole, M. K. Tripathy, R. Kumar, and R. S. Sharma, "FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins", J. Radioanal Nucl. Chem., 304 917 (2015). https://doi.org/10.1007/s10967-014-3906-3
  40. D. Chen and M. A. Hickner, "Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes", ACS Appl. Mater. Interfaces, 4, 5775 (2012). https://doi.org/10.1021/am301557w
  41. V. Herman, H. Takacs, F. Duclairoir, O. Renault, J. H. Tortaic, and B. Viala, "Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization", RSC Adv., 5, 51371 (2015). https://doi.org/10.1039/C5RA06847A
  42. R. Tang, Y. Zhang, Y. Zhang, Z. Yu, "Synthesis and characterization of chitosan based dye containing quaternary ammonium group", Carbohydrate Polymers, 139, 191 (2016). https://doi.org/10.1016/j.carbpol.2015.12.047
  43. H. Wang, Y. Wen, H. Peng, C. Zheng, Y. Li, S. Wang, S. Sun, X. Xie, and X. Zhou, "Grafting polytetrafluoroethylene micropowder via in situ electron beam irradiation-induced polymerization", Polymers, 10, 503 (2018). https://doi.org/10.3390/polym10050503