DOI QR코드

DOI QR Code

Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor

생물막 반응기내 다공성 중공사형막을 이용한 운전방식에 따른 흡입 압력

  • Kim, Min Hyeong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Koo, Eeung Mo (Department of Chemical and Energy Engineering, Seoul National University of Science and Technology) ;
  • Lee, Min Soo (Department of Chemical and Energy Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 김민형 (서울과학기술대학교 화공생명공학과) ;
  • 구응모 (서울과학기술대학교 융합과학대학원 화공에너지공학과) ;
  • 이민수 (서울과학기술대학교 융합과학대학원 화공에너지공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2021.10.15
  • Accepted : 2021.10.27
  • Published : 2021.10.31

Abstract

In this study the suction pressure was measured with respect to operational time by submersing the multi-bore capillary membrane module in membrane bioreactor(MBR). The hexagonal shape capillary module which has the nominal pore size of 0.2 ㎛, outer diameter of 6.4 or 4.2 mm was immersed in MLSS 8,000 mg/L active sludge aqueous solution, and confirmed changes with respect to permeation flux and air flow rate. It was operated by the filtration/relaxation(FR), FR with backwashing(FR/BW), and sinusoidal flux continuous operation(SFCO) modes. The suction pressure for the SFCO and FR modes was lower at 30 and 50 L/m2·hr, respectively. In addition, the suction pressure of the module with a small outer diameter was relatively low. The suction pressure of a large outer diameter was greatly increased, but it could be reduced by more than 40% by backwashing.

본 연구에서는 다공성 중공사형 분리막(multi-bore capillary membrane module)을 생물막 반응기(MBR)에 침지시켜 운전시간에 따른 흡입 압력을 측정하였다. 공칭 세공크기가 0.2㎛, 외경이 6.4 또는 4.2 mm이고 육각 형태인 중공사형모듈을 MLSS 8,000 mg/L 활성 슬러지 수용액에 각각 침지시키고 투과 유속, 공기량에 따른 변화를 확인하였다. 여과운전/정지이완(FR) 및 정지이완 시 역세척(FR/BW) 및 사인파형 투과유속 연속운전(SFCO) 방식으로 조작하였다. SFCO의 흡입 압력은 30 L/m2·hr에서 낮았으며, 50 L/m2·hr에서는 FR의 흡입 압력이 높게 나타났다. 또한 외경이 작은 모듈의 흡입 압력 상승이 비교적 낮았으며, 외경이 큰 모듈의 흡입 압력은 높게 상승하였지만 역세척으로 40% 이상 감소시킬 수 있었다.

Keywords

Acknowledgement

이 연구는 서울과학기술대학교 교내학술연구비 지원으로 수행되었습니다.

References

  1. M. A. Khan, H. H. Ngo, W. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, and H. Liang, "Can membrane bioreactor be a smart option for water treatment?"Bioresource Technol. Rep., 4, 80 (2018). https://doi.org/10.1016/j.biteb.2018.09.002
  2. J. H. Chang, J. Y. Jung, J. W. Lee, and S. H. Noh, "Fouling characteristics of free-end hollow fiber membrane with backpulsing", Membr. J., 11, 66 (2001).
  3. J. Y. Park and J. H. Hwang, "Hybrid water treatment of photocatalyst coated polypropylene beads and ceramic membranes: effect of membrane and water back-flushing period", Membr. J., 23, 211 (2013).
  4. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR Process", Membr. J., 16, 188 (2006).
  5. K. G. Song, Y. Kim, and K. H. Ahn, "Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor", Desalination, 221, 467 (2008). https://doi.org/10.1016/j.desal.2007.01.107
  6. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The effect of coagulant on filtration performance in submerged MBR system", Membr. J., 16, 182 (2006).
  7. X. Du, G. Liu, F. Qu, K. Li, S. Shao, G. Li, and H. Liang "Removal of iron, manganese and ammonia groundwater using a PAC-MBR system: the anti-pollution ability, microbial population and membrane fouling", Desalination, 403, 97 (2017). https://doi.org/10.1016/j.desal.2016.03.002
  8. P. Krzeminski, L. Leverette, S. Malamis, and E. Katsou, "Membrane bioreactors - a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects", J. Membr. Sci., 527, 207 (2017). https://doi.org/10.1016/j.memsci.2016.12.010
  9. K. A. Bu-Rashid, and W. Czolkoss, "Pilot tests of mutibore UF membrane at Addur SWRO desalination plant, Bahrain", Desalination, 203, 229 (2007). https://doi.org/10.1016/j.desal.2006.04.010
  10. P. Wang, L. Luo, and T. S. Chung, "Tri-bore ultra-filtration hollow fiber membranes with a novel triangle-shape outer geometry", J. Membr. Sci., 452, 212 (2014). https://doi.org/10.1016/j.memsci.2013.10.033
  11. "Bringing the water from nature to tap", Flitration+ Separation, May/June, 18 (2019).
  12. D. I. Jeong, S. H. Jung, S. Lee, and K. Y. Chung, "Transmembrane pressure with respect to backwashing and sinusoidal flux continuous operation modes for the submerged hollow fiber membrane in the activated sludge solution", Membr. J., 25, 524 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.524
  13. J. H. Kim, E. S. Kim, and K. Y. Chung, "Transmembrane pressure of backwashing, filtration/relaxation and sinusoidal flux continuous operation modes for submerged plate membrane", Membr. J., 29, 216 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.216
  14. M. H. Lee, "Biological wastewater treatment practice for environmental managers.", pp. 28-33, Hongmungwan, (2014).