DOI QR코드

DOI QR Code

Development of Pore-filled Polymer Electrolyte Membranes for Flexible Electrochromic Devices

유연한 전기변색 소자를 위한 세공충진 고분자 전해질 멤브레인의 개발

  • Received : 2021.10.07
  • Accepted : 2021.10.21
  • Published : 2021.10.31

Abstract

A flexible electrochromic device (ECD) is a promising technology that is expected to be applied in various fields such as smart windows. Polymer electrolyte is an important component that determines the bleaching-coloration performance and physical stability of flexible ECDs. In this study, a pore-filled polymer electrolyte membrane (PFPEM) with excellent dimensional stability was developed to effectively fabricate flexible ECDs and improve durability. Polyvinyl acetate, which has excellent adhesion, and polyethylene glycol, which can improve ionic conductivity, were filled in the pores of a porous substrate made of polyethylene, which is inexpensive and has excellent physical and chemical stability. The optimal lithium salt (LiTFSI) content of the prepared PFPEM was determined at about 27 wt%, and it was confirmed to possess excellent dimensional stability, adhesive strength, and ion conductivity close to that of conventional polymer electrolytes. Although the visible light transmittance was lowered by the use of the porous substrate, it was expected to act as an advantage in the colored state.

유연한 전기변색 소자(electrochromic device, ECD)는 스마트 윈도우 등 다양한 분야에서 응용이 기대되는 유망한 기술이다. 고분자 전해질은 유연한 ECD의 탈-변색 성능 및 물리적 안정성을 결정하는 중요한 구성요소이다. 본 연구에서는 효과적인 유연한 ECD 제조 및 내구성 향상을 위해 치수안정성이 우수한 세공충진 고분자 전해질 멤브레인(PFPEM)을 개발하였다. 저렴하며 물리적 및 화학적 안정성이 우수한 폴리에틸렌 재질의 다공성 지지체의 세공에 접착력이 우수한 polyvinyl acetate와 이온전도도를 향상시킬 수 있는 polyethylene glycol을 사용하여 제조한 고분자 전해질을 충진하였다. 제조된 PFPEM의 최적 리튬 염(LiTFSI) 함량은 약 27 wt%에서 결정되었으며 우수한 치수안정성와 접착 강도 그리고 종래의 고분자 전해질에 근접하는 이온전도 특성을 가지고 있음을 확인하였다. 다공성 지지체의 사용으로 가시광 투과율이 저하되었으나 변색 상태에서는 오히려 장점으로 작용할 것으로 전망되었다.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 산업기술평가관리원의 지원(20010491)과 환경부 및 한국환경산업기술원의 2021년도 녹색융합 전문인력양성 지원사업을 통해 수행되었음

References

  1. C. G. Granqvist, "Electrochromic tungsten oxide films: review of progress 1993-1998", Sol. Energy Mater. Sol. Cells, 60, 201 (2000). https://doi.org/10.1016/S0927-0248(99)00088-4
  2. S. Macher, M. Rumpel, M. Schott, U. Posset, G. A. Giffin, and P. Lobmann, "Avoiding voltage-Induced degradation in PET-ITO-based flexible electrochromic devices", ACS Appl. Mater. Interfaces, 12, 36695 (2020). https://doi.org/10.1021/acsami.0c07860
  3. D. W. Kim, S. Y. Kim, and J. H. Yun, "R&D trends for smart window materials", Information Display, 19, 29 (2018).
  4. Y. Kim, M. Han, J. Kim, and E. Kim, "Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window", Energy Environ. Sci., 11, 2124 (2018). https://doi.org/10.1039/C8EE00080H
  5. P. R. Somani and S. Radhakrishnan, "Electrochromic materials and devices: present and future", Mater. Chem. Phys., 77, 117 (2003). https://doi.org/10.1016/S0254-0584(01)00575-2
  6. E. Eren, M. F. Aydin, and A. U. Oksuz, "A practical approach for generation of WO3-based flexible electrochromic devices", J. Solid State Electrochem., 24, 1057 (2020). https://doi.org/10.1007/s10008-020-04588-0
  7. R. Leones, R. C. Sabadini, F. C. Sentanin, J. M. S. S. Esperanca, A. Pawlicka, and M. M. Silva, "Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes", Sol. Energy Mater. Sol. Cells, 169, 98 (2017). https://doi.org/10.1016/j.solmat.2017.04.047
  8. S. J. Yoo and Y. E. Sung, "Electrochromic materials and devices", News & Information for Chemical Engineers, 26, 519 (2008).
  9. A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: the prerequisites, challenges and prospects", Energy Technol., 6, 33 (2017). https://doi.org/10.1002/ente.201700705
  10. S. Guan, W. Wang, J. Zheng, and C. Xu, "A method to achieve full incorporation of PMMA-based gel electrolyte in fiber-structured PVB for solid-state electrochromic device fabrication", Electrochim. Acta, 354, 136702 (2020). https://doi.org/10.1016/j.electacta.2020.136702
  11. J. S. Yu and S. H. Lee, "Adhesion and adhesion mechanism", J. Adhes. Interface, 1, 63 (2000).
  12. K.-W. Cho and D.-H. Lee, "Adhesion theory and adhesion technology", Polym. Sci. Technol., 6, 545 (1995).
  13. N. Myshkin and A. Kovalev, "Adhesion and surface forces in polymer tribology-A review", Sol. Energy Mater. Sol. Cells, 6, 143 (2018).
  14. T. S. Babra, M. Wood, J. S. Godleman, S. Salimi, C. Warriner, N. Bazin, C. R. Siviour, I. W. Hamley, W. Hayes, and B. W. Greenland, "Fluoride-responsive debond on demand adhesives: Manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures", Eur. Polym. J., 119, 260 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.038
  15. J. LeBono, L. Barton, and M. Birkett, "Low temperature tensile lap-shear testing of adhesively bonded polyethylene pipe", Int. J. Adhes. Adhes., 74, 57 (2017). https://doi.org/10.1016/j.ijadhadh.2016.12.003
  16. R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, "Infrared electrochromic conducting polymer devices", J. Mater. Chem. C, 5, 5824 (2017). https://doi.org/10.1039/C7TC00257B
  17. S. J. Kwon, S.-H. Park, M. S. Park, J. S. Lee, and J.-H. Lee, "Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators", J. Membr. Sci., 544, 213 (2017). https://doi.org/10.1016/j.memsci.2017.09.022
  18. M. H. Park and J. H. Hong, "The trends of functional Aahesion and environmental countermeasure", Polym. Sci. Technol., 6, 595 (1995).
  19. A. Kaboorani, B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei, and S. Wang, "Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive", Eur. Polym. J., 48, 1829 (2012). https://doi.org/10.1016/j.eurpolymj.2012.08.008
  20. G. Petkovic, M. Vukoje, J. Bota, and S. P. Preprotic, "Enhancement of polyvinyl acetate (PVAc) adhesion performance by SiO2 and TiO2 nanoparticles", Coatings, 9, 707 (2019). https://doi.org/10.3390/coatings9110707
  21. E. Jasiukaityte-Grojzdek, M. Kunaver, D. Kukanja, and D. Moderc, "Renewable (waste) material based polyesters as plasticizers for adhesives", Int. J. Adhes. Adhes., 46, 56 (2013). https://doi.org/10.1016/j.ijadhadh.2013.05.015
  22. S. F. Dana, D.-V. Nguyen, J. S. Kochhar, X.-Y. Liu, and L. Kang, "UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers on mechanical and adhesion properties", Soft Matter, 9, 6270 (2013). https://doi.org/10.1039/c3sm50879j
  23. H. T. Ahmed, V. J. Jalal, D. A. Tahir, A. H. Mohamad, and O. G. Abdullah, "Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films", Results Phys., 15, 102735 (2019). https://doi.org/10.1016/j.rinp.2019.102735
  24. I. C. Ezenwa and T. Yoshino, "Electrical resistivity of solid and liquid Pt: Insight into electrical resistivity of ε-Fe", Earth Planet. Sci. Lett., 544, 116380 (2020). https://doi.org/10.1016/j.epsl.2020.116380
  25. P.-W. Chen, C.-T. Chang, M. M. Ali, J.-Y. Wu, Y.-C. Li, M.-H. Chen, D.-J. Jan, and C.-T. Yuan, "Tantalum oxide film deposited by vacuum cathodic arc plasma with improved electrochromic performance", Sol. Energy Mater. Sol. Cells, 182, 188 (2018). https://doi.org/10.1016/j.solmat.2018.02.034
  26. V. B. Isfahani, N. Memarian, H. R. Dizaji, A. Arab, and M. M. Silva, "The physical and electrochromic properties of Prussian Blue thin films electrodeposited on ITO electrodes", Electrochim. Acta, 304, 282 (2019). https://doi.org/10.1016/j.electacta.2019.02.120
  27. G. T. Phan, D. V. Pham, R. A. Patil, C.-H. Tsai, C.-C. Lai, W.-C. Yeh, Y. Liou, and Y.-R. Ma, "Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode", Sol. Energy Mater. Sol. Cells, 231, 111306 (2021). https://doi.org/10.1016/j.solmat.2021.111306
  28. Y. Yue, H. Li, K. Li, J. Wang, H. Wang, Q. Zhang, Y. Li, and P. Chen, "High-performance complementary electrochromic device based on WO3 ·0.33H2O/PEDOT and prussian blue electrodes", J. Phys. Chem. Solids, 110, 284 (2017). https://doi.org/10.1016/j.jpcs.2017.06.022
  29. Acik, G., Cansoy, C. E., and Kamaci, M.,"Effect of flow rate on wetting and optical properties of electrospun poly(vinylacetate) micro-fibers", Colloid Polym. Sci., 297, 77 (2019). https://doi.org/10.1007/s00396-018-4443-3
  30. Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Wpm, J. C. Lee, and Y. S. Kang, "Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells", Adv. Mater., 16, 1753 (2004). https://doi.org/10.1002/adma.200306664
  31. Chieng, B., Ibrahim, N., Yunus, W., and Hussein, M., "Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets", Polymers, 6, 93 (2013). https://doi.org/10.3390/polym6010093
  32. M. Marcos, D. Cabaleiro, M. Guimarey, M. Comunas, L. Fedele, J. Fernandez, and Lugo, L., "PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets", Nanomaterials, 8, 16 (2017). https://doi.org/10.3390/nano8010016
  33. M.-S. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Dye-sensitized solar cells based on crosslinked poly(ethylene glycol) electrolytes", J. Photochem. Photobiol. A, 183, 15 (2006). https://doi.org/10.1016/j.jphotochem.2006.02.013