DOI QR코드

DOI QR Code

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk (Department of Chemical Engineering, Hanyang University) ;
  • Suh, Dong Hack (Department of Chemical Engineering, Hanyang University)
  • Received : 2021.05.18
  • Accepted : 2021.06.07
  • Published : 2021.11.25

Abstract

The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

Keywords

References

  1. E. Park, Positive or negative? Public perceptions of nuclear energy in South Korea: evidence from big data, Nucl. Eng. Techonol. 51 (2) (2019) 626-630, https://doi.org/10.1016/j.net.2018.10.025.
  2. L. Geng, T. Liu, K. Zhou, G. Yang, Can power affect environmental risk attitude toward nuclear energy? Energy Pol. 113 (2018) 87-93, https://doi.org/10.1016/j.enpol.2017.10.051.
  3. E.O. Adamov, V.I. Rachkov, New technological platform for the national nuclear energy strategy development, Therm. Eng. 64 (2017) 945-951, https://doi.org/10.1134/S004060151713002X.
  4. N. Mahmood, Z. Wang, B. Zhang, The role of nuclear energy in the correction of environmental pollution: evidence from Pakistan, Nucl. Eng. Techonol. 52 (6) (2020) 1327-1333, https://doi.org/10.1016/j.net.2019.11.027.
  5. J.H. Song, T. Kim, J.W. Yeon, Radioactivity data analysis of 137Cs in marine sediments near severely damaged Chernobyl and Fukushima nuclear power plants, Nucl. Eng. Techonol. 52 (2) (2020) 366-372, https://doi.org/10.1016/j.net.2019.07.017.
  6. T. Sasaki, D. Matoba, T. Dohi, K. Fujiwara, T. Kobayashi, K. Iijima, Vertical distribution of 90Sr and 137Cs in soils near the Fukushima Daiichi nuclear power station, J. Radioanal. Nucl. Chem. 326 (2020) 303-314, https://doi.org/10.1007/s10967-020-07294-3.
  7. A. Bilici, S. Bilici, F. Kulahci, Statistical analysis for 134Cs and 137Cs radioactivity risk levels modeling, J. Radioanal. Nucl. Chem. 326 (2020) 1047-1064, https://doi.org/10.1007/s10967-020-07399-9.
  8. E.A. Abdel-Galil, R.S. Hassan, M.A. Eid, Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isot. 148 (2019) 91-101, https://doi.org/10.1016/j.apradiso.2019.03.029.
  9. S.S. Choi, J.H. Lee, Y.M. Jin, S.H. Lee, Adsorption characteristics of volatile organic compounds onto lyocell-based activated carbon fibers, Carbon. Lett. 29 (2019) 633-642, https://doi.org/10.1007/s42823-019-00063-7.
  10. K.C. Khulbe, T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water. Sci. 8 (2018) 19, https://doi.org/10.1007/s13201-018-0661-6.
  11. X. Liu, R. Tian, W. Ding, H. Yunhua, L. Hang, Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions, Adsorption 25 (2019) 747-755, https://doi.org/10.1007/s10450-019-00081-x.
  12. M.N. Sahmoune, Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents, Environ. Chem. Lett. 17 (2019) 697-704, https://doi.org/10.1007/s10311-018-00819-z.
  13. A.G. Varghese, S.A. Paul, M.S. Latha, Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents, Environ. Chem. Lett. 17 (2019) 867-877, https://doi.org/10.1007/s10311-018-00843-z.
  14. A. Shahzad, M. Moztahida, K. Tahir, B. Kim, H. Jeon, A.A. Ghani, D.S. Lee, Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions, J. Nucl. Mater. 539 (2020) 152277, https://doi.org/10.1016/j.jnucmat.2020.152277.
  15. J. Wang, S. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374 (2018) 430-438, https://doi.org/10.1016/j.ccr.2018.07.014.
  16. M.M.S. Ali, N.M. Sami, A.A. El-Sayed, Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies, J. Radioanal. Nucl. Chem. 324 (2020) 189-201, https://doi.org/10.1007/s10967-020-07067-y.
  17. H. Kim, H. Wi, S. Kang, S. Yoon, S. Bae, Y. Hwang, Prussian blue immobilized cellulosic filter for the removal of aqueous cesium, Sci. Total Environ. 670 (2019) 779-788, https://doi.org/10.1016/j.scitotenv.2019.03.234.
  18. M.A. Komkova, A.A. Zarochintsev, E.E. Karyakina, A.A. Karyakin, Electrochemical and sensing properties of Prussian Blue based nanozymes "artificial peroxidase", J. Electroanal. Chem. 872 (2020) 114048, https://doi.org/10.1016/j.jelechem.2020.114048.
  19. P. Rauwel, E. Rauwel, Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured prussian blue hybrid nano-composites: a review, Nanomaterials 9 (5) (2019) 682, https://doi.org/10.3390/nano9050682.
  20. A.M. Alansi, M. Al-Qunaibit, I.O. Alade, T.F. Qahtan, T.A. Saleh, Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye, J. Mol. Liq. 253 (2018) 297-304, https://doi.org/10.1016/j.molliq.2018.01.034.
  21. A.M. Alansi, T.F. Qahtan, T.A. Saleh, Solar-driven fixation of bismuth oxyhalides on reduced graphene oxide for efficient sunlight-responsive immobilized photocatalytic systems, Adv. Mater. Interfaces 8 (3) (2021) 2001463, https://doi.org/10.1002/admi.202001463.
  22. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innov. (2020) 101067, https://doi.org/10.1016/j.eti.2020.101067.
  23. W. Chen, F. He, S. Zhang, H. Xv, Z. Xv, Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation, Environ. Sci. Pollut. Res. 25 (2018) 9840-9848, https://doi.org/10.1007/s11356-018-1335-.
  24. J.H. Lee, S.H. Lee, D.H. Suh, High micropore number and specific surface of carbon fibers pretreated with a swarm of CO2 microenanobubbles, Environ. Chem. Lett. (2021) 1-7, https://doi.org/10.1007/s10311-021-01243-6.
  25. S.N. Farhan, A.A. Khadom, Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae, Int. J. Ind. Chem. 6 (2015) 119-130, https://doi.org/10.1007/s40090-015-0038-8.
  26. M. Tuzen, A. Sari, T.A. Saleh, Synthesis, characterization and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media, Chem. Eng. Res. Des. 163 (2020) 76-84, https://doi.org/10.1016/j.cherd.2020.08.021.
  27. M. Tuzen, T.A. Saleh, A. Sari, Interfacial polymerization of trimesoyl chloride with melamine and palygorskite for efficient uranium ions ultra-removal, Chem. Eng. Res. Des. 159 (2020) 353-361, https://doi.org/10.1016/j.cherd.2020.04.034.
  28. M. Hadadian, E.K. Goharshadi, M.M. Fard, H. Ahmadzadeh, Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions, Appl. Phys. A 124 (2018) 239, https://doi.org/10.1007/s00339-018-1664-8.
  29. G. Ozsin, M. Kilic, E. Apaydin-Varol, A. Eren Putun, Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies, Appl. Water. Sci. 9 (2019) 56, https://doi.org/10.1007/s13201-019-0942-8.
  30. J.H. Lee, S.H. Lee, D.H. Suh, Using nanobubblized carbon dioxide for effective microextraction of heavy metals, J. CO2. Util. 39 (2020) 101163, https://doi.org/10.1016/j.jcou.2020.101163.
  31. J. Li, Y. Zan, Z. Zhang, M. Dou, F. Wang, Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium, J. Hazard Mater. 385 (2020) 121568, https://doi.org/10.1016/j.jhazmat.2019.121568.
  32. A.M.S. El-Din, T. Monir, M.A. Sayed, Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions, Environ. Sci. Pollut. Res. 26 (2019) 25550-25563, https://doi.org/10.1007/s11356-019-05851-2.