DOI QR코드

DOI QR Code

TAMED EXHAUSTION FUNCTIONS AND SCHWARZ TYPE LEMMAS FOR ALMOST HERMITIAN MANIFOLDS

  • Weike, Yu (School of Mathematics and Statistics Nanjing University of Science and Technology)
  • Received : 2021.11.02
  • Accepted : 2022.04.22
  • Published : 2022.11.30

Abstract

In this paper, we study a special exhaustion function on almost Hermitian manifolds and establish the existence result by using the Hessian comparison theorem. From the viewpoint of the exhaustion function, we establish a related Schwarz type lemma for almost holomorphic maps between two almost Hermitian manifolds. As corollaries, we deduce several versions of Schwarz and Liouville type theorems for almost holomorphic maps.

Keywords

Acknowledgement

The author thanks the anonymous referee of this paper for careful reading and helpful comments.

References

  1. L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359-364. https://doi.org/10.2307/1990065 
  2. Z. H. Chen, S. Y. Cheng, and Q. K. Lu, On the Schwarz lemma for complete Kahler manifolds, Sci. Sinica 22 (1979), no. 11, 1238-1247. 
  3. H. Chen and X. Nie, Schwarz lemma: the case of equality and an extension, J. Geom. Anal. 32 (2022), no. 3, Paper No. 92, 18 pp. https://doi.org/10.1007/s12220-021-00771-5 
  4. S. Chern, On holomorphic mappings of hermitian manifolds of the same dimension, in Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), 157-170, Amer. Math. Soc., Providence, RI, 1968. 
  5. T. Chong, Y. Dong, Y. Ren, and W. Yu, Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds, Bull. Lond. Math. Soc. 53 (2021), no. 1, 26-41. https://doi.org/10.1112/blms.12394 
  6. Y. Dong, Y. Ren, and W. Yu, Schwarz type lemmas for pseudo-Hermitian manifolds, J. Geom. Anal. 31 (2021), no. 3, 3161-3195. https://doi.org/10.1007/s12220-020-00389-z 
  7. C. Ehresmann and P. Libermann, Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris 232 (1951), 1281-1283. 
  8. P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 257-288. 
  9. S. I. Goldberg and T. Ishihara, Harmonic quasiconformal mappings of Riemannian manifolds, Amer. J. Math. 98 (1976), no. 1, 225-240. https://doi.org/10.2307/2373623 
  10. S. I. Goldberg, T. Ishihara, and N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geom. 10 (1975), no. 4, 619-630. http://projecteuclid.org/euclid.jdg/1214433165 
  11. K.-T. Kim and H. Lee, On the Omori-Yau almost maximum principle, J. Math. Anal. Appl. 335 (2007), no. 1, 332-340. https://doi.org/10.1016/j.jmaa.2007.01.058 
  12. K.-T. Kim and H. Lee, Schwarz's lemma from a differential geometric viewpoint, IISc Lecture Notes Series, 2, IISc Press, Bangalore, 2011. 
  13. S. Kobayashi, Almost complex manifolds and hyperbolicity, Results Math. 40 (2001), no. 1-4, 246-256. https://doi.org/10.1007/BF03322709 
  14. Y. Lu, Holomorphic mappings of complex manifolds, J. Differential Geom. 2 (1968), 299-312. http://projecteuclid.org/euclid.jdg/1214428442 
  15. K. Masood, On holomorphic mappings between almost Hermitian manifolds, Proc. Amer. Math. Soc. 149 (2021), no. 2, 687-699. https://doi.org/10.1090/proc/15209 
  16. L. Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kahler manifolds, Comm. Pure Appl. Math. 74 (2021), no. 5, 1100-1126. https://doi.org/10.1002/cpa.21987 
  17. A. Ratto, M. Rigoli, and L. Veron, Conformal immersions of complete Riemannian manifolds and extensions of the Schwarz lemma, Duke Math. J. 74 (1994), no. 1, 223-236. https://doi.org/10.1215/S0012-7094-94-07411-5 
  18. Y. Ren and K. Tang, General Schwarz lemmas between pseudo-Hermitian manifolds and Hermitian manifolds, J. Appl. Anal. Comput. 11 (2021), no. 3, 1640-1651. https://doi.org/10.11948/20200387 
  19. H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547-558. https://doi.org/10.1007/BF02566705 
  20. H. L. Royden, Comparison theorems for the matrix Riccati equation, Comm. Pure Appl. Math. 41 (1988), no. 5, 739-746. https://doi.org/10.1002/cpa.3160410512 
  21. C. L. Shen, A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic maps, J. Reine Angew. Math. 348 (1984), 23-33. https://doi.org/10.1515/crll.1984.348.23 
  22. V. Tosatti, A general Schwarz lemma for almost-Hermitian manifolds, Comm. Anal. Geom. 15 (2007), no. 5, 1063-1086. https://dx.doi.org/10.4310/CAG.2007.v15.n5.a6 
  23. V. Tosatti, B. Weinkove, and S.-T. Yau, Taming symplectic forms and the Calabi-Yau equation, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 401-424. https://doi.org/10.1112/plms/pdn008 
  24. X. Yang, RC-positivity and the generalized energy density I: Rigidity, e-prints, Oct 2018, arXiv:1810.03276. 
  25. H. C. Yang and Z. H. Chen, On the Schwarz lemma for complete Hermitian manifolds, in Several complex variables (Hangzhou, 1981), 99-116, Birkhauser Boston, Boston, MA, 1984. 
  26. S. T. Yau, Remarks on conformal transformations, J. Differential Geom. 8 (1973), 369-381. http://projecteuclid.org/euclid.jdg/1214431798 
  27. S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203. https://doi.org/10.2307/2373880 
  28. C. Yu, Hessian comparison and spectrum lower bound of almost Hermitian manifolds, Chinese Ann. Math. Ser. B 39 (2018), no. 4, 755-772. https://doi.org/10.1007/s11401-018-0094-4