DOI QR코드

DOI QR Code

Analysis of Middle School Students' Verbal and Physical Interactions of Group Size in Small Group Learning Using Augmented Reality

소집단 크기에 따른 중학생의 증강현실을 활용한 소집단 학습에서 나타나는 언어적·물리적 상호작용

  • Received : 2022.05.20
  • Accepted : 2022.11.06
  • Published : 2022.10.31

Abstract

This study analyzed paired middle school students' verbal and physical interactions in small group learning using augmented reality. Twelve 8th graders were paired to take classes of solubility and melting/boiling points based on augmented reality. These classes were videotaped and recorded. After the classes, all the students participated in a semi-structured interview. The results were analyzed in three sections; individual statement units of verbal interaction, interaction units of verbal interaction and physical interaction. In the individual statement units of verbal interaction, the proportion of information question/explanation was found to be high. In the interaction units of verbal interaction, the proportion of simple interaction was the highest, followed by elaborated interaction. Beneath the elaborate interaction, the proportion of cumulative interaction was found to be the highest, followed by reformative interaction. In the physical interaction, writing a worksheet and gazing at a virtual object were higher. On the basis of the results, effective ways to form a proper environment in small group learning using augmented reality are discussed.

이 연구는 중학생의 증강현실을 활용한 2인 1조의 소집단 학습에서 나타나는 언어적·물리적 상호작용을 분석하였다. 서울 시내 중학교 2학년 학생 12명이 용해도, 녹는점과 끓는점 개념에 대해 증강현실을 활용한 2인 1조의 소집단 학습에 참여하였다. 이 수업은 녹음 및 녹화되었으며, 수업이 종료된 후 학생들을 대상으로 반구조화된 면담을 시행하였다. 연구 결과는 개별 진술 단위, 상호작용 단위 그리고 물리적 상호작용으로 각각 분석하였다. 개별 진술 단위에서는 정보 설명과 정보 질문의 비율이 높게 나타났다. 상호작용 단위는 단순 상호작용, 정교화 상호작용의 비율이 높았다. 정교화 상호작용을 하위 영역별로 보면, 누적형 상호작용의 비율이 높았으며 뒤를 이어 교정형 상호작용이 나타났다. 물리적 상호작용은 활동지를 쓰는 행동과 가상 객체를 관찰하는 행동의 비율이 높았다. 이상의 연구 결과를 바탕으로 중학생 2인의 증강현실을 활용한 소집단 학습을 효과적으로 구성할 수 있는 적절한 방안을 제시하였다.

Keywords

Acknowledgement

이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021S1A5B5A17058675).

References

  1. Anderson, T., Howe, C., Soden, R., Halliday, J., & Low, J. (2001). Peer interaction and the learning of critical thinking skills in further education students. Instructional Science, 29(1), 1-32. https://doi.org/10.1023/a:1026471702353
  2. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355
  3. Bacon, D. R. (2005). The effect of group projects on content-related learning. Journal of Management Education, 29(2), 248-267. https://doi.org/10.1177/1052562904263729
  4. Baron, L. J., & Abrami, P. C. (1992). The effects of group size and exposure time on microcomputer learning. Computers in Human Behavior, 8(4), 353-365. https://doi.org/10.1016/0747-5632(92)90029-E
  5. Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29(4), 856-865.
  6. Cai, S., Wang, X., & Chiang, F. K. (2014). A case study of augmented reality simulation system application in a chemistry course. Computers in Human Behavior, 37, 31-40. https://doi.org/10.1016/j.chb.2014.04.018
  7. Cha, J., Park, H., Kim, K., & Noh, T. (2005). Verbal interaction in cooperative CAI by group composition. Journal of the Korean Chemical Society, 49(6), 575-583.
  8. Chiang, T. H. C., Yang, S. J. H., & Hwang, G.-J. (2014). Students' online interactive patterns in augmented reality-based inquiry activities. Computers & Education, 78, 97-108. https://doi.org/10.1016/j.compedu.2014.05.006
  9. Driver, R. (1995). Constructivist approaches to science teaching. In L. P. Steffe, & J. Gale (Eds.), Constructivism in education (pp. 385-400). New York, NY: Routledge.
  10. Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22. https://doi.org/10.1007/s10956-008-9119-1
  11. Duran, D., & Monereo, C. (2005). Styles and sequences of cooperative interaction in fixed and reciprocal peer tutoring. Learning and Instruction, 15(3), 179-199. https://doi.org/10.1016/j.learninstruc.2005.04.002
  12. Georgiou, Y., & Kyza, E. A. (2021). Bridging narrative and locality in mobile-based augmented reality educational activities: Effects of semantic coupling on students' immersion and learning gains. International Journal of Human-Computer Studies, 145, 102546.
  13. Han, S., & Lim, C. (2020). Research trends on augmented reality education in Korea from 2008 to 2019. Journal of Educational Technology, 36(3), 505-528. https://doi.org/10.17232/kset.36.3.505
  14. Hanid, M. F. A., Said, M. N. H. M., & Yahaya, N. (2020). Learning strategies using augmented reality technology in education: Meta-analysis. Universal Journal of Educational Research, 8(5A), 51-56.
  15. Ibanez, M. B., Di-Serio, A., Villaran-Molina, D., & Delgado-Kloos, C. (2014). Augmented reality-based simulators as discovery learning tools: An empirical study. IEEE Transactions on Education, 58(3), 208-213. https://doi.org/10.1109/TE.2014.2379712
  16. Jarvela, S., Naykki, P., Laru, J., & Luokkanen, T. (2007). Structuring and regulating collaborative learning in higher education with wireless networks and mobile tools. Journal of Educational Technology & Society, 10(4), 71-79.
  17. Johnson, D. W., & Johnson, F. P. (2009). Joining together: Group theory and group skills(10th ed.). Upper Saddle River, NJ: Pearson Education.
  18. Joo, Y., Kim, K., & Noh, T. (2014). A comparison of verbal interaction patterns in science cooperative learning based on grouping by middle school students' collectivism. Journal of the Korean Association for Science Education, 34(3), 221-233. https://doi.org/10.14697/jkase.2014.34.3.0221
  19. Kang, S. (2000). Concept learning strategy emphasizing social consensus during discussion: Instructional effect and verbal interaction in small group discussion. Doctoral Dissertation, Seoul National University, Korea.
  20. Kang, S., Kim, C., & Noh, T. (2000). Analysis of verbal interaction in small group discussion. Journal of the Korean Association for Science Education, 20(3), 353-363.
  21. Kim, Y., Kim, M., Ha, M., & Lim, S. (2017). Analysis of changes in verbal interaction types of science-gifted students. EURASIA Journal of Mathematics, Science & Technology Education, 13(6), 2441-2457.
  22. Kirschner, P., Strijbos, J.-W., Kreijns, K., & Beers, P. J. (2004). Designing electronic collaborative learning environments. Educational Technology Research and Development, 52(3), 47-66.
  23. Kooloos, J. G., Klaassen, T., Vereijken, M., Van Kuppeveld, S., Bolhuis, S., & Vorstenbosch, M. (2011). Collaborative group work: Effects of group size and assignment structure on learning gain, student satisfaction and perceived participation. Medical Teacher, 33(12), 983-988. https://doi.org/10.3109/0142159X.2011.588733
  24. Kye, B., & Kim, Y. (2008). Investigation on the relationships among media characteristics, presence, flow, and learning effects in augmented reality based learning. Journal of Educational Technology, 24(4), 193-224. https://doi.org/10.17232/KSET.24.4.193
  25. Lee, H. J. (2011). Conceptual change by peer instruction of 6th grade students in science fields. Master's Thesis, Korea National University of Education, Cheongju.
  26. Lee, J., Lee, B., & Noh, T. (2018). A comparison of middle school students' macroscopic and microscopic conceptions related to the properties of substances. Journal of the Korean Chemical Society, 62(3), 243-252. https://doi.org/10.5012/JKCS.2018.62.3.243
  27. Lee, J., Park, G., & Noh, T. (2020). Development and application of the multiple representation-based learning strategies using augmented reality on the concept of the particulate nature of matter. Journal of the Korean Association for Science Education, 40(4), 375-383.
  28. Lee, W.-H. (2016). Usability evaluation concept of mobile augmented reality interface design. Korea Society of Design Trend, 53, 191-200.
  29. Lin, T. J., Duh, H. B. L., Li, N., Wang, H. Y., & Tsai, C. C. (2013). An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, 314-321. https://doi.org/10.1016/j.compedu.2013.05.011
  30. Matcha, W., & Rambli, D. R. A. (2013). Exploratory study on collaborative interaction through the use of augmented reality in science learning. Procedia Computer Science, 25, 144-153. https://doi.org/10.1016/j.procs.2013.11.018
  31. Matthews, M. R. (2002). Constructivism and science education: A further appraisal. Journal of Science Education and Technology, 11(2), 121-134. https://doi.org/10.1023/A:1014661312550
  32. Price, S., & Rogers, Y. (2004). Let's get physical: The learning benefits of interacting in digitally augmented physical spaces. Computers & Education, 43(1-2), 137-151. https://doi.org/10.1016/j.compedu.2003.12.009
  33. Rayner, G., & Papakonstantinou, T. (2018). The use of peer-assisted learning to enhance foundation biology students' understanding of evolution. International Journal of Innovation in Science and Mathematics Education, 26(3), 65-77.
  34. Roth, W. M. (2001). Situating cognition. The Journal of the Learning Sciences, 10(1-2), 27-61.
  35. Shin, S., Kim, H., Noh, T., & Lee, J. (2020). High school students' verbal and physical interactions appeared in collaborative science concept learning using augmented reality. Journal of the Korean Association for Science Education, 40(2), 191-201.
  36. Sung, J., & Jo, J.-W. (2016). An exploratory study on user experience of augmented reality advertising. Journal of Digital Convergence, 14(8), 177-183. https://doi.org/10.14400/JDC.2016.14.8.177
  37. Tallyn, E., Frohlich, D., Lynketscher, N., Signer, B., & Adams, G. (2017). Using paper to support collaboration in educational activities. In T. Koschmann, D. D. Suthers, & T.-W. Chan (Eds.), Computer supported collaborative learning 2005: The next 10 years! (pp.672-676). New York, NY: Routledge.
  38. Treen, E., Atanasova, C., Pitt, L., & Johnson, M. (2016). Evidence from a large sample on the effects of group size and decision-making time on performance in a marketing simulation game. Journal of Marketing Education, 38(2), 130-137.
  39. Wilkinson, I. A., & Fung, I. Y. (2002). Small-group composition and peer effects. International Journal of Educational Research, 37(5), 425-447. https://doi.org/10.1016/S0883-0355(03)00014-4