DOI QR코드

DOI QR Code

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber Bundles

  • Tamaryska, SETYAYUNITA (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Ragil, WIDYORINI (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Sri Nugroho, MARSOEM (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Denny, IRAWATI (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2022.08.11
  • Accepted : 2022.09.23
  • Published : 2022.11.25

Abstract

Currently, composite board manufacturing using natural fibers has the potential to expand owing to environmental awareness. To produce a composite board, treatment is required to improve the mechanical and physical properties of the natural fibers. In this study, sodium chloride (NaCl) was used for the chemical treatment. However, studies on chemical treatments using NaCl are limited. This study aimed to investigate the characteristics of kenaf fibers after NaCl treatment. The NaCl treatment concentrations were 1, 3, and 5 wt.% at room temperature, with soaking durations of 1, 2, and 3 h. The tensile strength, strain, and Young's modulus were measured to evaluate the mechanical properties of the fibers. The fiber bundle diameter, weight change owing to treatment, and contact angle were determined to analyze the effect of NaCl treatment. The kenaf fiber bundle treated with 5 wt.% NaCl for 3 h exhibited the highest tensile strength, Young's modulus, reduction in fiber bundle diameter, weight change, and decrease in contact angle compared to those of untreated fiber bundles. The tensile properties of the fiber bundle exhibited a tendency to decrease with increasing fiber bundle diameter. Increasing the soaking duration from 1 to 2 h did not result in a significant decrease in the fiber bundle diameter or an increase in tensile strength. However, a further increase in the soaking duration from 2 to 3 h resulted in a considerable decrease in the fiber bundle diameter and an increase in the tensile strength.

Keywords

Acknowledgement

We appreciate the financial support of the PMDSU Program from the Ministry of Research, Technology, and Higher Education of Indonesia for this study.

References

  1. Anuar, H., Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Composites Part B: Engineering 42(3): 462-465. https://doi.org/10.1016/j.compositesb.2010.12.013
  2. Aziz, S.H., Ansell, M.P. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Composites Science and Technology 64(9): 1219-1230. https://doi.org/10.1016/j.compscitech.2003.10.001
  3. Aziz, S.H., Ansell, M.P., Clarke, S.J., Panteny, S.R. 2005. Modified polyester resins for natural fibre composites. Composites Science and Technology 65(3-4): 525-535. https://doi.org/10.1016/j.compscitech.2004.08.005
  4. Azwa, Z.N., Yousif, B.F. 2013. Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability 98(12): 2752-2759. https://doi.org/10.1016/j.polymdegradstab.2013.10.008
  5. d'Almeida, J.R.M. 2006. Analysis of cost and flexural strength performance of natural fiber-polyester composites. Polymer-Plastics Technology and Engineering 40(2): 205-215. https://doi.org/10.1081/PPT-100000065
  6. Davoodi, M.M., Sapuan, S.M., Ahmad, D., Ali, A., Khalina, A., Jonoobi, M. 2010. Mechanical properties of hybrid kenaf/glass reinforced epoxy compo- site for passenger car bumper beam. Materials & Design 31(10): 4927-4932. https://doi.org/10.1016/j.matdes.2010.05.021
  7. El-Shekeil, Y.A., Sapuan, S.M., Abdan, K., Zainudin, E.S. 2012a. Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design 40: 299-303. https://doi.org/10.1016/j.matdes.2012.04.003
  8. El-Shekeil, Y.A., Sapuan, S.M., Khalina, A., Zainudin, E.S., Al-Shuja'a, O.M. 2012b. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polymer Letters 6(12): 1032-1040. https://doi.org/10.3144/expresspolymlett.2012.108
  9. Ghori, S.W., Sreenivas Rao, G. 2021. Fiber loading of date palm and kenaf reinforced epoxy composites: Tensile, impact and morphological properties. Journal of Renewable Materials 9(7): 1283-1292. https://doi.org/10.32604/jrm.2021.014987
  10. Guo, A., Sun, Z., Satyavolu, J. 2019. Impact of chemical treatment on the physiochemical and mechanical properties of kenaf fibers. Industrial Crops and Products 141: 111726.
  11. Hakim, L., Widyorini, R., Nugroho, W., Prayitno, T. 2022. The effect of alkali treatment on the surface and mechanical properties of fibrovascular bundles of Salacca sumatrana Becc. fronds. BioResources 17(2): 2296-2312. https://doi.org/10.15376/biores.17.2.2296-2312
  12. Hamidon, M.H., Sultan, M.T.H., Ariffin, A.H., Shah, A.U.M. 2019. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced compo- sites: A review. Journal of Materials Research and Technology 8(3): 3327-3337.
  13. Horvath, T., Kalman, E., Kutsan, G., Rauscher, A. 1994. Corrosion of mild steel in hydrochloric acid solutions containing organophosphonic acids. British Corrosion Journal 29(3): 215-218.
  14. Hwang, J.W., Oh, S.W. 2020. Properties of board manufactured from sawdust, ricehusk and charcoal. Journal of the Korean Wood Science and Technology 48(1): 61-75. https://doi.org/10.5658/WOOD.2020.48.1.61
  15. Ishak, M.R., Leman, Z., Sapuan, S.M., Salleh, M.Y., Misri, S. 2009. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering 4(3): 316-320.
  16. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich parti- cleboard (SPb). Journal of the Korean Wood Science and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  17. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  18. Jeong, B., Park, B.D., Causin, V. 2020. Effects of storage time on molecular weights and properties of melamine-urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 48(3): 291-302. https://doi.org/10.5658/WOOD.2020.48.3.291
  19. Japanese Industrial Standard [JIS]. 2003. JIS A 5908: Particleboards. Japanese Standards Association, Tokyo, Japan.
  20. Khan, J.A., Khan, M.A. 2015. The Use of Jute Fibers as Reinforcements in Composites. In: Biofibre Reinforcement in Composite Materials, Ed. by Faruk, O. and Sain, M. Woodhead, Oxford, UK. pp. 3-34.
  21. Lee, S.H., Kwon, S.M., Um, G.J., Kim, N.H. 2008. Anatomical characteristics of kenaf grown in reclaimed land: Volumetric composition and cell dimension. Journal of the Korean Wood Science and Technology 36(4): 11-18.
  22. Mahjoub, R., Yatim, J.M., Sam, A.R.M., Hashemi, S.H. 2014. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials 55: 103-113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
  23. Mardin, H., Wardana, I.N.G., Pratikto, Suprapto, W., Kamil, K. 2016. Effect of sugar palm fiber surface on interfacial bonding with natural sago matrix. Advances in Materials Science and Engineering 2016: 9240416.
  24. Marion, G.M., Millero, F.J., Camoes, M.F., Spitzer, P., Feistel, R., Chen, C.T.A. 2011. pH of seawater. Marine Chemistry 126(1-4): 89-96. https://doi.org/10.1016/j.marchem.2011.04.002
  25. Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22. https://doi.org/10.5658/WOOD.2021.49.1.14
  26. Munawar, S.S., Umemura, K., Kawai, S. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53(2): 108-113. https://doi.org/10.1007/s10086-006-0836-x
  27. Munawar, S.S., Umemura, K., Tanaka, F., Kawai, S. 2008. Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. Journal of Wood Science 54: 28-35.
  28. Nosbi, N., Akil, H.M., Ishak, Z.A.M., Bakar, A.A. 2011. Behavior of kenaf fiber after immersion in several water conditions. BioResources 6(2): 950-960. https://doi.org/10.15376/biores.6.2.950-960
  29. Osman, E., Vakhguelt, A., Sbarski, I., Mutasher, S. 2011. Mechanical properties of kenaf - unsaturated polyester composites: Effect of fiber treatment and fiber length. Advanced Materials Research 311-313: 260-271. https://doi.org/10.4028/www.scientific.net/AMR.311-313.260
  30. Paul, A., Joseph, K., Thomas, S. 1997. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology 57(1): 67-79. https://doi.org/10.1016/S0266-3538(96)00109-1
  31. Perremans, D., Hendrickx, K., Verpoest, I., Van Vuure, A.W. 2018. Effect of chemical treatments on the mechanical properties of technical flax fibres with emphasis on stiffness improvement. Composites Science and Technology 160: 216-223. https://doi.org/10.1016/j.compscitech.2018.03.030
  32. Purnawati, R., Febrianto, F., Wistara, I.N.J., Nikmatin, S., Hidayat, W., Lee, S.H., Kim, N.H. 2018. Physical and chemical properties of kapok (Ceiba pentandra) and balsa (Ochroma pyramidale) fibers. Journal of the Korean Wood Science and Technology 46(4): 393-401. https://doi.org/10.5658/WOOD.2018.46.4.393
  33. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M., Khalina, A. 2009. Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC). Journal of Food, Agriculture & Environment 7: 908-911.
  34. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M., Khalina, A.J.I.J. 2010. Combined effects of water absorption due to water immersion, soil buried and natural weather on mechanical properties of kenaf fibre unsaturated polyester composites (KFUPC). International Journal of Mechanical and Materials Engineering 5(1): 11-17.
  35. Saba, N., Paridah, M.T., Abdan, K., Ibrahim, N.A. 2016. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials 123: 15-26. https://doi.org/10.1016/j.conbuildmat.2016.06.131
  36. Samaei, S.E., Mahabadi, H.A., Mousavi, S.M., Khavanin, A., Faridan, M., Taban, E. 2022. The influence of alkaline treatment on acoustical, morphological, tensile and thermal properties of kenaf natural fibers. Journal of Industrial Textiles 51(5): 8601S-8625S. https://doi.org/10.1177/1528083720944240
  37. Sarjadi, M.S., Aziz, S.A., Rahman, L. 2018. Effect of seawater treatment on the mechanical properties of oil palm empty fruit bunch fibre/poly (vinyl alcohol) composites. ASM Science Journal 11(2): 87-94.
  38. Setyayunita, T., Widyorini, R., Marsoem, S.N., Irawati, D. 2021. Study on the characteristics of NaCl treated kenaf fiber epoxy composite board. IOP Conference Series: Earth and Environmental Science 891(1): 012006.
  39. Setyayunita, T., Widyorini, R., Marsoem, S.N., Irawati, D. 2022. Effect of different conditions of sodium chloride treatment on the characteristics of kenaf fiber-epoxy composite board. Journal of the Korean Wood Science and Technology 50(2): 93-103.
  40. Sumada, K., Dewati, R., Suprihatin. 2017. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods. Journal of Physics: Conference Series 953(1): 012214.
  41. Sumardi, I., Alamsyah, E.M., Suhaya, Y., Dungani, R., Sulastiningsih, I.M., Pramestie, S.R. 2022. Development of bamboo zephyr composite and the physical and mechanical properties. Journal of the Korean Wood Science and Technology 50(2): 134-147.
  42. Tajvidi, M., Najafi, S.K., Shekaraby, M.M., Motiee, N. 2006. Effect of chemical reagents on the mechanical properties of natural fiber polypropylene composites. Polymer Composites 27(5): 563-569. https://doi.org/10.1002/pc.20227
  43. Wibowo, E.S., Lubis, M.A.R., Park, B.D. 2021. Simultaneous improvement of formaldehyde emission and adhesion of medium-density fiberboard bonded with low-molar ratio urea-formaldehyde resins modified with nanoclay. Journal of the Korean Wood Science and Technology 49(5): 453-461. https://doi.org/10.5658/WOOD.2021.49.5.453
  44. Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., Zainudin, E.S. 2015. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated com- posites. Materials & Design 67: 173-179. https://doi.org/10.1016/j.matdes.2014.11.024
  45. Yousif, B.F., Wong, K.J., El-Tayeb, N.S.M. 2007. An Investigation on Tensile, Compression and Flexural Properties of Natural Fibre Reinforced Polyester Composites. In: Seattle, WA, USA, Proceedings of ASME 2007 International Mechanical Engineering Congress and Exposition (IMECE 2007), pp. 619-624.