DOI QR코드

DOI QR Code

Investigation of Sound Absorption Ability of Acanthopanax senticosus Wastes

  • Eun-Suk, JANG (Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University)
  • Received : 2022.03.10
  • Accepted : 2022.10.26
  • Published : 2022.11.25

Abstract

This study aims to investigate the sound absorption ability of Acanthopanax senticosus wastes as an eco-friendly sound-absorbing material. The sound absorption coefficient was examined with different heights of A. senticosus wastes filling (40, 60, 80, and 100 mm) in impedance tubes. The sound absorption peaks shifted to a lower frequency as the height of A. senticosus wastes inside the tubes increased. The sound absorption ability at filling heights of 80 and 100 mm was obtained as 0.3M and 0.5M grades, respectively, based on KS F 3503. The results suggest that A. senticosus wastes exhibit good sound absorption ability and can therefore be used as an efficient, eco-friendly sound-absorbing material.

Keywords

Acknowledgement

This research was supported by a grant from the Basic Science Research Program of the National Resear- ch Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2019R1I1A3A02059471). It was also supported by a grant from the international cooperation program framework managed by the NRF (NRF-2020K2A9A2A08000181). I am also thankful for the "Business Startup Incubator Support Program" supported by the Ministry of Education and the National Research Foundation of Korea.

References

  1. Ahn, K.S., Pang, S.J., Oh, J.K. 2021. Prediction of withdrawal resistance of single screw on Korean wood products. Journal of the Korean Wood Science and Technology 49(1): 93-102. https://doi.org/10.5658/WOOD.2021.49.1.93
  2. Bhingare, N.H., Prakash, S., Jatti, V.S. 2019. A review on natural and waste material composite as acoustic material. Polymer Testing 80: 80106142.
  3. Chung, H., Park, Y., Yang, S.Y., Kim, H., Han, Y., Chang, Y.S., Yeo, H. 2017. Effect of heat treatment temperature and time on sound absorption coefficient of Larix kaempferi wood. Journal of Wood Science 63(6): 575-579.
  4. Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., Schellnhuber, H.J. 2020. Buildings as a global car- bon sink. Nature Sustainability 3(4): 269-276. https://doi.org/10.1038/s41893-019-0462-4
  5. Fortin-Smith, J., Sherwood, J., Drane, P., Ruggiero, E., Campshure, B., Kretschmann, D. 2019. A finite element investigation into the effect of slope of grain on wood baseball bat durability. Applied Sciences 9(18): 3733.
  6. Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
  7. Ghani, R.S.M., Lee, M.D. 2021. Challenges of wood modification process for plantation Eucalyptus: A review of Australian setting. Journal of the Korean Wood Science and Technology 49(2): 191-209.
  8. Gokulkumar, S., Thyla, P.R., Prabhu, L., Sathish, S. 2019. Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. Journal of Natural Fibers 17(12): 1719-1738. https://doi.org/10.1080/15440478.2019.1598913
  9. Gyeongsangnam-do Agricultural Research & Extension Services [GNARES]. 2020. The cultivation technology of Acanthopanax senticosus. https://www.gnares.go.kr/startup/00001/00021.web?amode=view&idx=7162&cpage=80
  10. Han, Y., Lee, S.M., Choi, J., Park, C.Y. 2021. A study on classification of wood cultural resources in South Korea. Journal of the Korean Wood Science and Technology 49(5): 430-452. https://doi.org/10.5658/WOOD.2021.49.5.430
  11. Hong, H.H., Hong, C.H. 2015. Research of functional components and antioxidant capacity by extract sol- vents from Aralia eleta Seemann and Cudrania tricuspidata. Journal of Foodservice Management 11(1): 77-90.
  12. International Organization for Standardization. 2001. Acoustics-Determination of Sound Absorption Co- efficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. ISO 10534-2. International Organization for Standardization, Geneva, Switzerland.
  13. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Science and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  14. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  15. Jang, E.S. 2022a. Experimental investigation of the sound absorption capability of wood pellets as an eco-friendly material. Journal of the Korean Wood Science and Technology 50(2): 126-133. https://doi.org/10.5658/WOOD.2022.50.2.126
  16. Jang, E.S. 2022b. Investigation of sound absorption ability of Hinoki cypress (Chamaecyparis obtusa) cubes. Journal of the Korean Wood Science and Technology 50(5): 365-374. https://doi.org/10.5658/WOOD.2022.50.5.365
  17. Jang, E.S. 2022c. Peanut shells as an environmentally beneficial sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 179-185. https://doi.org/10.5658/WOOD.2022.50.3.179
  18. Jang, E.S. 2022d. Use of pine (Pinus densiflora) pollen cones as an environmentally friendly sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 186-192. https://doi.org/10.5658/WOOD.2022.50.3.186
  19. Jang, E.S., Kang, C.W. 2021a. How do the pore traits of hardwoods affect sound absorption performance of their cross sections? -Focus on 6 species of Korean hardwoods. Wood and Fiber Science 53(4): 260-272. https://doi.org/10.22382/wfs-2021-26
  20. Jang, E.S., Kang, C.W. 2021b. Investigation of sound absorption properties of heat-treated Indonesian Momala (Homalium foetidum (Roxb.) Benth.) and Korean red toon (Toona sinensis (A. Juss.) M. Roem.) cross sections. Forests 12(11): 1447.
  21. Jang, E.S., Kang, C.W. 2021c. The pore structure and sound absorption capabilities of Homalium (Homalium foetidum) and Jelutong (Dyera costulata). Wood Science and Technology 56(1): 323-344.
  22. Jang, E.S., Kang, C.W. 2021d. Sound absorption characteristics of three species (Binuang, Balsa and Paulownia) of low density hardwood. Holzforschung 75(12): 1115-1124. https://doi.org/10.1515/hf-2021-0049
  23. Jang, E.S., Kang, C.W. 2021e. The use of ring-porous East Asian ash (Fraxinus japonica (Thunb.) Steud.) and oak (Quercus spp.) cross-sections as eco-friendly resonance-absorbing materials for building. Wood Material Science & Engineering. https://doi.org/10.1080/17480272.2021.1987518
  24. Jang, E.S., Kang, C.W. 2022. An experimental study on changes in sound absorption capability of spruce (Picea sitchensis), Douglas fir (Pseudotsuga menzi- esii), and larch (Larix kaempferi) after microwave treatment. Journal of Wood Science 68: 2.
  25. Jia, A., Zhang, Y., Gao, H., Zhang, Z., Zhang, Y., Wang, Z., Zhang, J., Deng, B., Qiu, Z., Fu, C. 2021. A review of Acanthopanax senticosus (Rupr and Maxim.) harms: From ethnopharmacological use to modern application. Journal of Ethnopharmacology 268: 113586.
  26. Jiang, Z.H., Zhao, R.J., Fei, B.H. 2004. Sound absorption property of wood for five eucalypt species. Journal of Forestry Research 15(3): 207-210. https://doi.org/10.1007/BF02911026
  27. Jung, S.Y., Kong, R.K., Lee, K.S., Byeon, H.S. 2021. Effects of air-dried leaves of evergreen broad-leaved trees on sound absorption property. Journal of the Korean Wood Science and Technology 49(5): 482-490. https://doi.org/10.5658/WOOD.2021.49.5.482
  28. Jung, S.Y., Yeom, D.H., Kong, R.K., Shin, G.G., Lee, K.S., Byeon, H.S. 2020. Sound absorption property of the leaves of two evergreen broad-leaved tree species, Dendropanax morbiferus and Fatsia japonica. Journal of the Korean Wood Science and Technology 48(5): 631-640. https://doi.org/10.5658/WOOD.2020.48.5.631
  29. Kang, C.W., Kolya, H., Jang, E.S., Zhu, S., Choi, B.S. 2021. Steam exploded wood cell walls reveals improved gas permeability and sound absorption capability. Applied Acoustics 179: 108049.
  30. Kang, J.H. 2018. Effects of fermented Kalopanax pictus on oxidative damage of neurofilament protein. Journal of the Korean Applied Science and Technology 35(1): 194-204.
  31. Kim, G.C., Kim, J.H. 2020. Changes in mechanical properties of wood due to 1 year outdoor exposure. Journal of the Korean Wood Science Technology 48(1): 12-21. https://doi.org/10.5658/WOOD.2020.48.1.12
  32. Kim, M.J., Chang, Y.S., Kim, M.J., Shim, K.B., Eom, C.D. 2019. Assessment of carbon storage capacity by substitution of wood in public facility: Comparative analysis of Seoullo 7017. Journal of the Korea Furniture Society 30(4): 312-318.
  33. Korean Standards Association. 2012. Sound Absrobing Materials. KS F 3503. Korean Standards Association, Seoul, Korea.
  34. Korean Standards Association. 2016. Determination of Moisture Content of Wood. KS F 2199. Korean Standards Association, Seoul, Korea.
  35. Lee, C., Jung, H., Chung, Y. 2021a. Functional characteristics of Nakdong Technique Treated on Paulownia Wood Surface. Journal of the Korean Wood Science and Technology 49(1): 82-92. https://doi.org/10.5658/WOOD.2021.49.1.82
  36. Lee, H.J., Lee, S.S., Choi, D.H., Kato, A. 2001. Studies on biological activity of wood extractives (VI): Flavonoids in heartwood of Prunus sargentii. Journal of the Korean Wood Science and Technology 29(2): 133-139.
  37. Lee, H.M., Jeon, W.S., Lee, J.W. 2021b. Analysis of anatomical characteristics for wood species identification of commercial plywood in Korea. Journal of the Korean Wood Science and Technology 49(6): 574-590. https://doi.org/10.5658/WOOD.2021.49.6.574
  38. Lee, Y.D. 2020. Immune functional properties of Korean (red) ginseng as a traditional food. Food Industry and Nutrition 25(1): 1-10.
  39. Maderuelo-Sanz, R., Barrigon Morillas, J.M., Gomez Escobar, V. 2014. Acoustical performance of loose cork granulates. European Journal of Wood and Wood Products 72(3): 321-330. https://doi.org/10.1007/s00107-014-0784-x
  40. Sedliacikova, M., Moresova, M., Alac, P., Mala, D. 2021. What is the supply and demand for coloured wood products? An empirical study in Slovakian practice. Forests 12(5): 530.
  41. Sim, J.S.T., Zulkifli, R., Tahir, M.F.M., Elwaleed, A.K. 2014. Recycled paper fibres as sound absorbing material. Applied Mechanics and Materials 663: 459-463. https://doi.org/10.4028/www.scientific.net/amm.663.459
  42. Taban, E., Valipour, F., Abdi, D.D., Amininasab, S. 2021. Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. International Journal of Environmental Science and Technology 18(9): 2765-2780. https://doi.org/10.1007/s13762-020-03024-0
  43. Taghiyari, H.R., Zolfaghari, H., Sadeghi, M.E., Esmailpour, A., Jaffari, A. 2014. Correlation between specific gas permeability and sound absorption coefficient in solid wood. Journal of Tropical Forest Science 26(1): 92-100.
  44. Vasina, M., Hughes, D.C., Horoshenkov, K.V., Lapcik, L. Jr. 2006. The acoustical properties of consolidated expanded clay granulates. Applied Acoustics 67(8): 787-796. https://doi.org/10.1016/j.apacoust.2005.08.003
  45. Voronina, V.V., Horoshenkov, K.V. 2004. Acoustic properties of unconsolidated granular mixes. Applied Acoustics 65(7): 673-691.
  46. Yang, S.M., Lee, H.J., Kang, S.G. 2020. Analysis of heat transfer characteristics by materials in closed conditions using acrylic hemisphere (I): Comparison of interior finishing materials. Journal of the Korean Wood Science and Technology 48(2): 217-230.
  47. Yoo, H.J., Ju, J.D., Park, J.H., Shin, C.S., Eom, C.D., Seo, J.W. 2021. Estimation of the optimal periods for planting and felling Larix kaempferi based on the period of its cambial activity. Journal of the Korean Wood Science Technology 49(5): 399-415. https://doi.org/10.5658/WOOD.2021.49.5.399