DOI QR코드

DOI QR Code

The CsSTE50 Adaptor Protein in Mitogen-Activated Protein Kinase Cascades Is Essential for Pepper Anthracnose Disease of Colletotrichum scovillei

  • Jong-Hwan, Shin (Division of Bio-Resource Sciences, Bio-Herb Research Institute, Agricultural and Life Science Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Byung-Seong, Park (Division of Bio-Resource Sciences, Bio-Herb Research Institute, Agricultural and Life Science Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kyoung Su, Kim (Division of Bio-Resource Sciences, Bio-Herb Research Institute, Agricultural and Life Science Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • 투고 : 2022.06.02
  • 심사 : 2022.09.24
  • 발행 : 2022.12.01

초록

Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.

키워드

과제정보

This study was supported by Basic Science Research Program through the National Research Foundation of Korea grant (NRF-2020R1A2C100550700) funded by the Ministry of Education, Science and Technology.

참고문헌

  1. Caires, N. P., Pinho, D. B., Souza, J., Silva, M. A., Lisboa, D. O., Pereira, O. L. and Furtado, G. Q. 2014. First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Dis. 98:1437.
  2. Chen, Y.-Y., Liu, J.-A., Jiang, S.-Q., Li, H. and Zhou, G.-Y. 2020. Colletotrichum fructicola STE50 is required for vegetative growth, asexual reproduction, appressorium formation, pathogenicity and the response to external stress. J. Plant Pathol. 102:335-342. https://doi.org/10.1007/s42161-019-00422-3
  3. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  4. Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G.-W., Kang, S., Kim, S., Lee, Y.-W. and Lee, Y.-H. 2013. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 41:D714-D719. https://doi.org/10.1093/nar/gks1163
  5. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  6. Diao, Y.-Z., Zhang, C., Liu, F., Wang, W.-Z., Liu, L., Cai, L. and  Liu, X.-L. 2017. Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38:20-37. https://doi.org/10.3767/003158517X692788
  7. Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovilleipepper pathosystem. mBio 12:e0162021.
  8. Fu, T., Shin, J.-H., Lee, N.-H., Lee, K. H. and Kim, K. S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Front. Microbiol. 13:770119.
  9. Gu, Q., Chen, Y., Liu, Y., Zhang, C. and Ma, Z. 2015. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytol. 206:315-328. https://doi.org/10.1111/nph.13158
  10. Hagiwara, D., Asano, Y., Marui, J., Yoshimi, A., Mizuno, T. and Abe, K. 2009. Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet. Biol. 46:868-878. https://doi.org/10.1016/j.fgb.2009.07.003
  11. Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46. https://doi.org/10.1016/j.gdata.2016.03.007
  12. Kanto, T., Uematsu, S., Tsukamoto, T., Moriwaki, J., Yamagishi, N., Usami, T. and Sato, T. 2014. Anthracnose of sweet pepper caused by Colletotrichum scovillei in Japan. J. Gen. Plant Pathol. 80:73-78.
  13. Khalimi, K., Darmadi, A. A. K. and Suprapta, D. N. 2019. First report on the prevalence of Colletotrichum scovillei associated with anthracnose on chili pepper in Bali, Indonesia. Int. J. Agric. Biol. 22:363-368.
  14. Lee, S.-C. and Lee, Y.-H. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cell. 8:698-704.
  15. Lee, Y.-H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700. https://doi.org/10.1105/tpc.5.6.693
  16. Li, G., Zhang, X., Tian, H., Choi, Y.-E., Tao, W. A. and Xu, J.-R. 2017. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ. Microbiol. 19:1959-1974. https://doi.org/10.1111/1462-2920.13710
  17. Mehrabi, R., Zhao, X., Kim, Y. and Xu, J.-R. 2009. The cAMP signaling and MAP kinase pathways in plant pathogenic fungi. In: Plant relationships, ed. by H. B. Deising, pp. 157-172. Springer-Heidelberg, Berlin, Germany.
  18. Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869-1878. https://doi.org/10.1105/tpc.7.11.1869
  19. Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., Copley, R., Courcelle, E., Das, U., Durbin, R., Fleischmann, W., Gough, J., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McDowall, J., Mitchell, A., Nikolskaya, A. N., Orchard, S., Pagni, M., Ponting, C. P., Quevillon, M., Selengut, J., Sigrist, C. J. A., Silventoinen, V., Studholme, D. J., Vaughan, R. and Wu, C. H. 2005. InterPro, progress and status in 2005. Nucleic Acids Res. 33:D201-D205. https://doi.org/10.1093/nar/gki106
  20. Noor, N. M. and Zakaria, L. 2018. Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. Eur. J. Plant Pathol. 151:961-973. https://doi.org/10.1007/s10658-018-1431-x
  21. Oo, M. M., Lim, G., Jang, H. A. and Oh, S.-K. 2017. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea. Mycobiology 45:184-191. https://doi.org/10.5941/MYCO.2017.45.3.184
  22. Park, G., Xue, C., Zhao, X., Kim, Y., Orbach, M. and Xu, J.-R. 2006. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822-2835. https://doi.org/10.1105/tpc.105.038422
  23. Park, J., Park, B., Jung, K., Jang, S., Yu, K., Choi, J., Kong, S., Park, J., Kim, S., Kim, H., Kim, S., Kim, J. F., Blair, J. E., Lee, K., Kang, S. and Lee, Y.-H. 2007. CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res. 36:D562-D571. https://doi.org/10.1093/nar/gkm758
  24. Ramezani-Rad, M. 2003. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Curr. Genet. 43:161-170. https://doi.org/10.1007/s00294-003-0383-6
  25. Saito, H. and Posas, F. 2012. Response to hyperosmotic stress. Genetics 192:289-318. https://doi.org/10.1534/genetics.112.140863
  26. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, USA. 1546 pp.
  27. Schamber, A., Leroch, M., Diwo, J., Mendgen, K. and Hahn, M. 2010. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol. Plant Pathol. 11:105-119.
  28. Shin, J.-H., Fu, T. and Kim, K. S. 2021. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet. Biol. 157:103636.
  29. Shin, J.-H., Gumilang, A., Kim, M.-J., Han, J.-H. and Kim, K. S. 2019a. A PAS-containing histidine kinase is required for conidiation, appressorium formation, and disease development in the rice blast fungus, Magnaporthe oryzae. Mycobiology 47:473-482. https://doi.org/10.1080/12298093.2019.1689037
  30. Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019b. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol. J. 35:575-584. https://doi.org/10.5423/PPJ.OA.06.2019.0171
  31. Shin, J.-H., Kim, H.-Y., Fu, T., Lee, K.-H. and Kim, K. S. 2022. CsPOM1, a DYRK family kinase, plays diverse roles in fungal development, virulence, and stress tolerance in the anthracnose pathogen Colletotrichum scovillei. Front. Cell. Infect. Microbiol. 12:861915.
  32. Skamnioti, P. and Gurr, S. J. 2007. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674-2689. https://doi.org/10.1105/tpc.107.051219
  33. Sumita, T., Izumitsu, K., Shigeyoshi, S., Gotoh, S., Yoshida, H., Tsuji, K., Yoshida, H., Kitade, Y. and Tanaka, C. 2020. An adaptor protein BmSte50 interacts with BmSte11 MAPKKK and is involved in host infection, conidiation, melanization, and sexual development in Bipolaris maydis. Mycoscience 61:85-94. https://doi.org/10.1016/j.myc.2019.10.003
  34. Sweigard, J. A., Chumley, F. G. and Valent, B. 1992. Disruption of a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 232:183-190 https://doi.org/10.1007/BF00279995
  35. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  36. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  37. Truckses, D. M., Bloomekatz, J. E. and Thorner, J. 2006. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 26:912-928 https://doi.org/10.1128/MCB.26.3.912-928.2006
  38. Wu, C., Jansen, G., Zhang, J., Thomas, D. Y. and Whiteway, M. 2006. Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev. 20:734-746.
  39. Xu, J.-R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706. https://doi.org/10.1101/gad.10.21.2696
  40. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  41. Zhao, W., Wang, T., Chen, Q. Q., Chi, Y. K., Swe, T. M. and Qi, R. D. 2016. First report of Colletotrichum scovillei causing anthracnose fruit rot on pepper in Anhui Province, China. Plant Dis. 100:2168.
  42. Zhao, X., Mehrabi, R. and Xu, J.-R. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6:1701-1714. https://doi.org/10.1128/EC.00216-07