DOI QR코드

DOI QR Code

MAXIMAL INVARIANCE OF TOPOLOGICALLY ALMOST CONTINUOUS ITERATIVE DYNAMICS

  • Kahng, Byungik (Department of Mathematics and Information Sciences University of North Texas at Dallas)
  • Received : 2021.03.24
  • Accepted : 2021.08.19
  • Published : 2022.01.01

Abstract

It is known that the maximal invariant set of a continuous iterative dynamical system in a compact Hausdorff space is equal to the intersection of its forward image sets, which we will call the first minimal image set. In this article, we investigate the corresponding relation for a class of discontinuous self maps that are on the verge of continuity, or topologically almost continuous endomorphisms. We prove that the iterative dynamics of a topologically almost continuous endomorphisms yields a chain of minimal image sets that attains a unique transfinite length, which we call the maximal invariance order, as it stabilizes itself at the maximal invariant set. We prove the converse, too. Given ordinal number ξ, there exists a topologically almost continuous endomorphism f on a compact Hausdorff space X with the maximal invariance order ξ. We also discuss some further results regarding the maximal invariance order as more layers of topological restrictions are added.

Keywords

References

  1. R. Adler, B. Kitchens, and C. Tresser, Dynamics of non-ergodic piecewise affine maps of the torus, Ergo. The. & Dynam. Sys. 21 (2001), 959-999. https://doi.org/10.1017/S0143385701001468
  2. E. Akin, The general topology of dynamical systems, Graduate Studies in Mathematics, 1, American Mathematical Society, Providence, RI, 1993. https://doi.org/10.1090/gsm/001
  3. Z. Artstein and S. V. Rakovic, Feedback and invariance under uncertainty via setiterates, Automatica J. IFAC 44 (2008), no. 2, 520-525. https://doi.org/10.1016/j.automatica.2007.06.013
  4. P. Ashwin, Non-smooth invariant circles in digital overflow oscillations, in Proceedings of the 4th International Workshop on Nonlinear Dynamics and Electronic Systems, pp. 417-422, Seville, Spain, 1996.
  5. P. Ashwin, Elliptic behaviour in the sawtooth standard map, Phys. Lett. A 232 (1997), no. 6, 409-416. https://doi.org/10.1016/S0375-9601(97)00455-6
  6. P. Ashwin, W. Chambers, and G. Petrov, Lossless digital filter overflow oscillations: approximation of invariant fractals, Int. J. Bifur. Chaos Appl. Sci. Eng. 7 (1997), 2603-2610. https://doi.org/10.1142/S021812749700176X
  7. P. Ashwin, J. H. B. Deane, and X. Fu, Dynamics of a bandpass sigma-delta modulator as a piecewise isometry, in Proc. IEEE Int. Symp. Circuit Sys., pp. 811-814, Sydney, Australia, 2001.
  8. P. Ashwin, X. Fu, T. Nishikawa, and K. Zyczkowski, Invariant sets for discontinuous parabolic area-preserving torus maps, Nonlinearity 13 (2000), no. 3, 819-835. https://doi.org/10.1088/0951-7715/13/3/317
  9. F. Blanchini, Set invariance in control, Automatica J. IFAC 35 (1999), no. 11, 1747-1767. https://doi.org/10.1016/S0005-1098(99)00113-2
  10. J. Buzzi, Piecewise isometries have zero entropy, Ergo. The. & Dynam. Sys. 21 (2001), 1371-1377.
  11. J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: rigidity, measures and complexity, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 383-405. https://doi.org/10.1017/S0143385703000488
  12. A. C. Davis, Nonlinear oscillations and chaos from digital filter overflow, Phil. Trans. Royal Soc. Lond. A-353 (1995), 85-99. https://doi.org/10.1098/rsta.1995.0092
  13. X.-C. Fu, F.-Y. Chen, and X.-H. Zhao, Dynamical properties of 2-torus parabolic maps, Nonlinear Dynam. 50 (2007), no. 3, 539-549. https://doi.org/10.1007/s11071-006-9179-9
  14. X.-C. Fu and J. Duan, Global attractors and invariant measures for non-invertible planar piecewise isometric maps, Phys. Lett. A 371 (2007), no. 4, 285-290. https://doi.org/10.1016/j.physleta.2007.06.033
  15. X.-C. Fu and J. Duan, On global attractors for a class of nonhyperbolic piecewise affine maps, Phys. D 237 (2008), no. 24, 3369-3376. https://doi.org/10.1016/j.physd.2008.07.012
  16. A. Goetz, Dynamics of a piecewise rotation, Discrete Contin. Dynam. Systems 4 (1998), no. 4, 593-608. https://doi.org/10.3934/dcds.1998.4.593
  17. A. Goetz, Sofic subshifts and piecewise isometric systems, Ergo. The. & Dynam. Sys. 19 (1999), 1485-1501. https://doi.org/10.1017/S0143385799151964
  18. A. Goetz and M. Mendes, Piecewise rotations: bifurcations, attractors and symmetries, in Bifurcation, symmetry and patterns (Porto, 2000), 157-165, Trends Math, Birkhauser, Basel, 2003.
  19. A. Goetz and G. Poggiaspalla, Rotations by π/7, Nonlinearity 17 (2004), no. 5, 1787-1802. https://doi.org/10.1088/0951-7715/17/5/013
  20. K. Hrbacek and T. Jech, Introduction to Set Theory, second edition, Monographs and Textbooks in Pure and Applied Mathematics, 85, Marcel Dekker, Inc., New York, 1984.
  21. T. Jech, Set theory, the third millennium edition, revised and expanded., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
  22. B. Kahng, Dynamics of symplectic piecewise affine elliptic rotations maps on tori, Ergod. Th. & Dynam. Sys. 22 (2002), 483-505. https://doi.org/10.1017/S0143385702000238
  23. B. Kahng, Dynamics of kaleidoscopic maps, Adv. Math. 185 (2004), no. 1, 178-205. https://doi.org/10.1016/S0001-8708(03)00170-1
  24. B. Kahng, The unique ergodic measure of the symmetric piecewise toral isometry of rotation angle θ = kπ/5 is the Hausdorff measure of its singular set, Dyn. Syst. 19 (2004), no. 3, 245-264. https://doi.org/10.1080/14689360410001729595
  25. B. Kahng, Maximal invariant sets of multiple valued iterative dynamics in disturbed control systems, Int. J. Circ. Sys. Signal Proc. 2 (2008), 113-120.
  26. B. Kahng, Positive invariance of multiple valued iterative dynamical systems in disturbed control models, in Proceedings of the 17th IEEE Mediterranean Conference on Control and Automation, pp. 664-668, Thessaloniki, Greece, 2009.
  27. B. Kahng, Redifining chaos: Devaney-chaos for piecewise isometric dynamical systems, International J. Math. Models and Methods in Applied Sciences 4 (2009), 317-326.
  28. B. Kahng, Singularities of 2-dimensional invertible piecewise isometric dynamics, Chaos 19 (2009), 023115. https://doi.org/10.1063/1.3119464
  29. B. Kahng, The approximate control problems of the maximal invariant sets of non-linear discrete-time disturbed control dynamical systems: an algorithmic approach, in Proceedings of the 4th International Conference on Control, Automation and Systems, pp. 1513-1518, KINTEX, Gyeonggi-do, Korea, 2010.
  30. B. Kahng, Multiple valued iterative dynamics models of nonlinear discrete-time control dynamical systems with disturbance, J. Korean Math. Soc. 50 (2013), no. 1, 17-39. https://doi.org/10.4134/JKMS.2013.50.1.017
  31. B. Kahng, An optimization of maximal invariance in a class of multiple valued iterative dynamics models of nonlinear disturbed control systems, Fractals 24 (2016), 1650044. https://doi.org/10.1142/S0218348X16500444
  32. B. Kahng, Theory and implementation of the multiple valued iterative dynamics algorithms for a class of singularly disturbed nonlinear control dynamical systems, Appl. Sci. 1 (2019), 1:1061.
  33. B. Kahng and J. Davis, Maximal dimensions of uniform Sierpinski fractals, Fractals 18 (2010), no. 4, 451-460. https://doi.org/10.1142/S0218348X10005135
  34. B. Kahng, M. Gomez, and E. Padilla, Visualization algorithms for the steady state sets of a class of singularly disturbed nonlinear control dynamical systems, Int. J. Math. Models Methods 10 (2016), 237-243.
  35. B. Kahng and M. Mendes, The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems, Discrete Contin. Dyn. Syst. 2013, Dynamical systems, differential equations and applications. 9th AIMS Conference. Suppl., 393-406, 2013. https://doi.org/10.3934/proc.2013.2013.393
  36. E. Kerrigan, J. Lygeros, and J. M. Maciejowski, A geometric approach to reachability computations for constrained discrete-time systems, in IFAC World Congress, Barcelona, Spain, 2002.
  37. E. Kerrigan and J. M. Maciejowski, Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control, in Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, 2000.
  38. L. Kocarev, C. W. Wu, and L. O. Chua, Complex behavior in digital filters with overflow nonlinearity: analytical results, IEEE Trans. Circuits Systems II 43 (1996), 234-246. https://doi.org/10.1109/82.486469
  39. T. Lin and L. O. Chua, A new class of pseudo-random generators based on chaos in digital filters, Int. J. Cir. Th. Appl., 21 (1993), 473-480. https://doi.org/10.1002/cta.4490210506
  40. J. H. Lowenstein, Fixed-point densities for a quasiperiodic kicked oscillator map, Chaos 5 (1995), 566-577. https://doi.org/10.1063/1.166126
  41. J. H. Lowenstein, Aperiodic orbits of piecewise rational rotations of convex polygons with recursive tiling, Dyn. Syst. 22 (2007), no. 1, 25-63. https://doi.org/10.1080/14689360601028100
  42. J. Lowenstein, S. Hatjispyros, and F. Vivaldi, Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off, Chaos 7 (1997), no. 1, 49-66. https://doi.org/10.1063/1.166240
  43. J. H. Lowenstein, K. L. Kouptsov, and F. Vivaldi, Recursive tiling and geometry of piecewise rotations by π/7, Nonlinearity 17 (2004), no. 2, 371-395. https://doi.org/10.1088/0951-7715/17/2/001
  44. J. H. Lowenstein, G. Poggiaspalla, and F. Vivaldi, Sticky orbits in a kickedoscillator model, Dyn. Syst. 20 (2005), no. 4, 413-451. https://doi.org/10.1080/14689360500167611
  45. D. Q. Mayne, M. M. Seron, and S. V. Rakovic, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica J. IFAC 41 (2005), no. 2, 219-224. https://doi.org/10.1016/j.automatica.2004.08.019
  46. M. Mendes, Dynamics of piecewise isometric systems with particular emphasis to the g map, Ph. D. Thesis, University of Surrey, 2001.
  47. M. Mendes, On maximal invariant sets, preprint, (August, 2006).
  48. M. J. Ogorza lek, Chaos and complexity in nonlinear electronic circuits, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 22, World Scientific Publishing Co. Pte. Ltd., Singapore, 1997. https://doi.org/10.1142/9789812798626
  49. C. J. Ong and E. G. Gilbert, Constrained linear systems with disturbances: enlargement of their maximal invariant sets by nonlinear feedback, in Proc. Amer. Control Conf. Minneapolis, pp. 5246-5251, MN, 2006.
  50. M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Statist. Phys. 77 (1994), no. 3-4, 841-866. https://doi.org/10.1007/BF02179463
  51. S. V. Rakovic and M. Fiacchini, Invariant Approximations of the Maximal Invariant Set or "Encircling the Square, in IFAC World Congress, Seoul, Korea, July 2008.
  52. S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, Invariant approximation of the minimal robust positively invariant set, IEEE Trans. Automat. Control 50 (2005), no. 3, 406-410. https://doi.org/10.1109/TAC.2005.843854
  53. S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and K. I. Kouramas, Optimized robust control invariance for linear discrete-time systems: theoretical foundations, Automatica J. IFAC 43 (2007), no. 5, 831-841. https://doi.org/10.1016/j.automatica.2006.11.006
  54. S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and J. Lygeros, Reachability analysis of discrete-time systems with disturbances, IEEE Trans. Automat. Control 51 (2006), no. 4, 546-561. https://doi.org/10.1109/TAC.2006.872835
  55. M. Trovati and P. Ashwin, Tangency properties of a pentagonal tiling generated by a piecewise isometry, Chaos 17 (2007), no. 4, 043129, 11 pp. https://doi.org/10.1063/1.2825291