DOI QR코드

DOI QR Code

Evaluation for the Manufacturing Characteristics and Thermal Conductivity of Engineering Scale Bentonite-Sand Buffer Blocks

공학규모 벤토나이트-모래 완충재 블록의 성형특성 및 열전도도 평가

  • Lee, Deuk-Hwan (Disposal Safety Evaluation Research Division, KAERI) ;
  • Yoon, Seok (Disposal Safety Evaluation Research Division, KAERI) ;
  • Kim, Jin-Seop (Disposal Performance Demonstration Research Division, KAERI) ;
  • Lee, Gi-Jun (Disposal Safety Evaluation Research Division, KAERI) ;
  • Kim, Ji-Won (Disposal Performance Demonstration Research Division, KAERI) ;
  • Kim, Min-Jun (Deep Geologic Disposal&storage Research Center, KIGAM)
  • 이득환 (한국원자력연구원 저장처분기술관리부) ;
  • 윤석 (한국원자력연구원 저장처분기술관리부) ;
  • 김진섭 (한국원자력연구원 처분성능실증연구부) ;
  • 이기준 (한국원자력연구원 저장처분기술관리부) ;
  • 김지원 (한국원자력연구원 처분성능실증연구부) ;
  • 김민준 (한국지질자원연구원 심층처분환경연구센터)
  • Received : 2022.12.01
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

The required density relationship according to the press pressure of the floating die method and the homogeneity of the density distribution in the buffer block was evaluated to analyze the manufacturing characteristics of engineering scale bentonite-sand buffer blocks. In addition, the thermal conductivity was measured and compared with that of the pure bentonite buffer block to evaluate the level of thermal conductivity performance improvement of the bentonite-sand buffer material. As a result, it was confirmed that the standard deviation of dry density decreased to 0.011 and showed a homogeneous density distribution under the condition of press pressure greater than 400 kg/cm2. Furthermore, as a result of the thermal conductivity test, the thermal conductivity of the buffer with optimum moisture content conditions was 1.345 and 1.261 W/(m·K) under the press pressure of 400 and 600 kg/cm2, respectively. It increased by 16.1% and 11.0% compared to the pure bentonite buffer material. Based on the results of this study, it is judged that it can be used as fundamental data for manufacturing a homogeneous bentonite-sand buffer block on an engineering scale.

본 연구에서는 공학규모 벤토나이트-모래 완충재 블록의 성형특성을 분석하기 위해 플롯팅 다이(floating die) 방식의 프레스 압력에 따른 소요 밀도 관계 및 완충재 내 밀도분포 편차에 대한 균질도를 평가하였다. 또한 벤토나이트-모래 완충재의 열전도도 성능향상 수준을 분석하기 위해 최적함수비 조건에서 열전도도를 측정하고, 순수 벤토나이트 완충재의 열전도도와 비교하였다. 연구 결과 프레스 압력이 400kg/cm2 이상의 조건에서 건조밀도 표준편차가 0.011로 감소하고 균질한 밀도분포를 나타내는 것으로 확인되었다. 열전도도 측정 결과 프레스 압력이 400, 600kg/cm2일 때의 최적함수비 조건에서 각각 1.345, 1.261W/(m·K)으로 측정되었으며, 이는 순수 벤토나이트 완충재와 비교했을 때 각각 16.1, 11.0% 상승한 것으로 분석되었다. 본 연구 결과를 기반으로 공학규모의 균질한 벤토나이트-모래 완충재 블록 제작을 위한 기초자료로 활용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국연구재단 원자력연구개발사업(2021M2E3A2041351)과 한국지질자원연구원의 기본사업인 '심지층 개발과 활용을 위한 지하심부 특성평가 기술개발(과제코드 GP2020-010)'의 지원을 받아 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Chen, Y.G., Liu, X.M., Mu, X., Ye, W.M., Cui, Y.J., Chen, B., and Wu, D.B. (2018), "Thermal Conductivity of Compacted GO-GMZ Bentonite Used as Buffer Material for a High-level Radioactive Waste Repository", Advances in Civil Engineering, Vol.2018, 9530813.
  2. Chen, Z.G., Tang, C.S., Zhu, C., Shi, B., and Liu, Y.M. (2017), "Compression, Swelling and Rebound behavior of GMZ Bentonite/additive Mixture under Coupled Hydro-mechanical Condition", Engineering Geology, Vol.221, pp.50-60. https://doi.org/10.1016/j.enggeo.2017.02.030
  3. Cho, W.J., Lee, J.O., Chun, K.S., and Park, H.S. (1999), "Analysis of Functional Criteria for Buffer Material in a High-level Radioactive Waste Repository", Nuclear Engineering and Technology, Vol.31, Isuue 1, pp.116-132.
  4. Cho, W.J., Lee, J.O., and Kang, C.H. (2000), "Hydraulic Conductivity of Bentonite-sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository", Nuclear Engineering and Technology, Vol.32, Issue 5, pp.495-503.
  5. Cho, W.J., Lee, J.O., and Kwon, S. (2011), "An Empirical Model for the Thermal Conductivity of Compacted Bentonite and a Bentonite-sand Mixture", Heat and Mass Transfer, Vol.47, pp. 1385-1393. https://doi.org/10.1007/s00231-011-0800-1
  6. Cho, W. J. (2017), "Radioactive Waste Disposal", KAERI/GP-495/2017.
  7. Dixon, D. A., Gray, M. N., and Thomas, A. W. (1985), "A Study of the Compaction Properties of Potential Clay-sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal", Engineering Geology, Vol.21, pp.247-255. https://doi.org/10.1016/0013-7952(85)90015-8
  8. Jobmann, M. and Buntebarth, G. (2009), "Influence of Graphite and Quartz Addition on the Thermo-physical Properties of Bentonite for Sealing Heat-generating Radioactive Waste", Applied Clay Science, Vol.44, Issue 3-4, pp.206-210. https://doi.org/10.1016/j.clay.2009.01.016
  9. Kim, G.I., Lee, D., and Kim, J.S. (2021), "A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+)(KRS+) for High-Level Radioactive Waste", Tunnel and Underground Space, Vol.31, No.4, pp.221-242.
  10. Kim, G.Y., Lee, J.O., Cho, W.J., and Baik, M.H. (2019a), "In-situ Demonstration of Engineered Barrier System (In-DEBS) for Characterization of Coupled THM behavior in KURT", Journal of Nuclear Fuel Cycle Waste Technology, Vol.17, No.S, pp.1-14.
  11. Kim, M.J., Lee, S.R., Jeon, J.S., and Yoon, S. (2019b), "Sensitivity Analysis of Bentonite Buffer Peak Temperature in a High-level Waste Repository", Annals of Nuclear Energy, Vol.123, pp.190-199. https://doi.org/10.1016/j.anucene.2018.09.020
  12. Kim, M.J., Lee, S.R., Yoon, S. Jeon, J.S., and Kim, M.S. (2018a), "Effect of Thermal Properties of Bentonite Buffer on Temperature Variation", Journal of the Korean Geotechnical Society, Vol.34, Issue 1, pp.17-24. https://doi.org/10.7843/KGS.2018.34.1.17
  13. Kim, J.S., Park, J.C., Kim, G.Y., amd So, J.C. (2015), "Suggestions on the Methodology for Manufacturing Homogeneous and Uniform Engineering-scale Buffer Blocks", Proceeding of the Korean Radioactive Waste Society, October 14-16, Busan.
  14. Kim, J.S., Yoon, S., Cho, W.J., Choi, Y.C., and Kim, G.Y. (2018b), "A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer Block in a High-level Nuclear Waste Repository", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.18, No.1, pp.123-136.
  15. Kim, M., Lee, S., Cheon, E., Kim, M., and Yoon, S. (2021), "Thermochemical Changes on Swelling Pressure of Compacted Bentonite", Annals of Nuclear Energy, Vol.151, 107882.
  16. Lambe, T. W. and R. V. Whitman. (1969), Soil Mechanics. New York: John Wiley and Sons.
  17. Lee, C., Yoon, S., Cho, W., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y. (2019), "Study on Thermal, Hydraulic, and Mechanical Properties of KURT Granite and Gyeongju Bentonite", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.1, Issue 17 pp.65-80.
  18. Lee, G.J., Yoon, S., Kim, T., and Kim, J.S., (2022a), "Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials", Tunnel & Underground Space, Vol.32, Issue 1, pp.59-77.
  19. Lee, G.J., Yoon, S., Kim, T., and Chang, S. (2022b), "Investigation of the Various Properties of Several Candidate Additives as Buffer Materials", Nuclear Engineering and Technology. In press.
  20. Lee, J., Cho, D., Choi, H., and Choi, J. (2007), "Concept of a Korean Reference Disposal System for Spent Fuels", Journal of Nuclear Science and Technology, Vol.44, No.12, pp.1565-1573.
  21. Lee, J.O., Cho, W.J., and Kwon, S. (2011), "Thermal-hydromechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository", Tunnel and Underground Space, Vol.21, No.4, pp. 264-273. https://doi.org/10.7474/TUS.2011.21.4.264
  22. Lloret, A., Villar, M. V., Sanchez, M., Gens, A., Pintado, X., and Alonso, E. E. (2003), "Mechanical behavior of Heavily Compacted Bentonite under High Suction Changes", Geotechnique, Vol.53, pp.27-40. https://doi.org/10.1680/geot.2003.53.1.27
  23. Park, S., Yoon, S., Kwon, S., and Kim, G.Y. (2020), "A Prediction of Saturated Hydraulic Conductivity for Compacted Bentonite Buffer in a High-level Radioactive Waste Disposal System", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.18, No.2, pp.133-141. https://doi.org/10.7733/jnfcwt.2020.18.2.133
  24. SKB (2007), RD&D-programme 2007, SKB TR-07-12. SKB Swedish Nuclear Fuel and Waste Management CO., Stockholm, p.260.
  25. Yoon, S., Lee, M.S., Kim, G.Y., Lee, S.R., and Kim, M.J. (2017), "A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository", Journal of the Korean Geotechnical Society, Vol.31, pp.55-64.
  26. Yoon, S., Jeon, J.S., Go, G.H., and Kim, G.Y. (2020), "An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation", Journal of the Korean Geotechnical Society, Vol.36, Issue 10, pp.33-39.
  27. Yoon, S., Kim, M-J., Park, S., and Kim, G.Y. (2021a), "Thermal Conductivity Prediction Model for Compacted Bentonites Considering Temperature Variations", Nuclear Engineering and Technology, Vol.53, Issue 10, pp.3359-3366. https://doi.org/10.1016/j.net.2021.05.001
  28. Yoon, S., Hong, C.H., Kim, T., and Kim, J.S. (2021b), "Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials", Journal of the Korean Geotechnical Society, Vol.37, Issue 10 pp.5-11. https://doi.org/10.7843/KGS.2021.37.10.5
  29. Yoon, S., Lee, G.J., Park, T.J., Lee, C., and Cho, D.K. (2022), Thermal Conductivity Evaluation for Bentonite Buffer Materials under Elevated Temperature Conditions. Case Studies in Thermal Engineering, 30, 101792
  30. Zhang, M., Zhang, H., Cui, S., Jia, L., Zhou, L., and Chen, H. (2012), "Engineering Properties of GMZ Bentonite-sand as Buffer/backfilling Material for High-level Waste Disposal", European journal of environmental and civil engineering, Vol.16, Issue 10, pp.1216-1237. https://doi.org/10.1080/19648189.2012.690934