DOI QR코드

DOI QR Code

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment

고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가

  • Jin, Hyunwoo (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Taeil (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jangguen (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Hyu-Soung (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Ryu, Byung Hyun (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 진현우 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 정태일 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 이장근 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 유병현 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2022.12.14
  • Accepted : 2022.12.22
  • Published : 2022.12.31

Abstract

The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.

세계 우주 기관들로 조직된 국제 우주탐사 협력 그룹이 발간하는 글로벌 우주탐사 로드맵에서는 미래 달 탐사 방향과 달 자원 활용을 위한 거주 계획을 반영하는 등 달은 심우주 탐사를 위한 전초기지로 주목받고 있다. 따라서 달 행성 지반 환경 재현 인프라 기술은 미래 달 지상 탐사를 위해 필요한 다양한 장비들의 성능검증에 활용될 수 있다. 본 연구에서는 달 착륙 및 기지 건설 후보지인 달 남극 영구음영지역의 고진공 및 극저온 지상 환경을 재현하고자 하였다. 현재까지 달 지상 환경 재현을 위한 효율적 장비 운용 프로세스는 제시되지 못한 실정으로, 본 연구에서는 파일럿 지반열진공챔버에 인공월면 지반을 조성한 뒤 다양한 진공 환경에 대해 일방향 지반냉각 실험을 진행하고 이를 평가하였다. 냉각효율 및 장비 안정성 측면에서 가장 유리한 진공 환경은 30-80 mbar인 것으로 파악되었으나, 고진공 환경에서 얼음이 승화되지 않기 위한 극저온의 온도를 구현하기 위해서는 주변부 냉각이 추가적으로 요구되었다. 이를 위해 본 연구에서는 동결비 개념을 적용해 효율적인 주변부 냉각 가동 시점을 제안하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124.  https://doi.org/10.1016/j.actaastro.2019.04.018
  2. Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12.  https://doi.org/10.1016/j.cogsc.2017.10.002
  3. Chung, T., Lim, J.Y., Kang, S., Yoo, Y., and Shin, H.S. (2018), "Vacuum Diagnosis and Testing of a Dirty Thermal Vacuum Chamber", Appl. Sci. Converg. Technol., Vol.27, No.6, pp.120-125.  https://doi.org/10.5757/ASCT.2018.27.6.120
  4. Chung, T., Ahn, H., Yoo, Y., and Shin, H.S. (2019), "An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust behavior for Lunar Surface Environment Simulation", KSCE J. Civ. Eng., Vol.39, No.2, pp.51-58. 
  5. Chung, T., Kim, Y.J., Ryu, B.H., and Shin, H.S. (2020), "A Study on Lunar Soil Simulant Pretreatment for Effective Simulation of Lunar Surface Environment", KSCE J. Civ. Eng., Vol.40, No.1, pp.51-58. 
  6. Cremers, C.J. and Birkebak, R.C. (1971), "Thermal Conductivity of Fines from Apollo 12", Proc. Lunar Sci. Conf., 2nd, USA, Vol. 3, pp.2311-2315. 
  7. Cremers, C.J. (1972), "Thermal Conductivity of Apollo 14", Proc. Lunar Sci. Conf., 3rd, USA, Vol.3, pp.2611-2617. 
  8. Cremers, C.J. (1975), "Thermophysical Properties of Apollo 14 Fines", J. Geophys. Res., Vol.80, No.32, pp.4466-4470.  https://doi.org/10.1029/JB080i032p04466
  9. David, K., Angel, A.M., Jared, A., Jonathan, B., Cary, B., Dallas, B., Brad, B., Vanessa, C., Justin, C., Blair, D., Chris, D., Barry, F., Jonathan, G., Koki, H., Laura, K., Jim, K., Bernard, K., Philip, M., Laura, M., Phillip, M., Clive, N., Erica, O., Gordon, R., Jim, S., Brandon, S., George, S., Paul, S., Mark, S., Kris, Z., and Guangdong, Z. (2019), "Commercial Lunar Propellant Architecture: A Collaborative Study of Lunar Propellant Production", REACH, Vol.13, pp. 100026-1-77. 
  10. Go, G.H., Lee, J., Chung, T., Ryu, B.H., Jin, H., Zhuang, L., Shin, H.S., Kim, J.H. and Yun, T.S. (2021), "Controlling Soil Disturbance of a Lunar Regolith Simulant Bed during Depressurization in a Vacuum Chamber", Sci. Rep., Vol.11, No.1878. 
  11. ISECG (2018), "The Global Exploration Roadmap", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
  12. ISECG (2020), "Global Exploration Roadmap - Supplement", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
  13. ISECG (2022), "Global Exploration Roadmap - Supplement", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
  14. Jin, H., Kim, Y., Ryu, B.H., and Lee, J. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25.  https://doi.org/10.7843/KGS.2020.36.8.17
  15. Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Chung. T. (2021), "Vacuum Pressure Effect on Thermal Conductivity of KLS-1", J. Korean Geotech. Soc., Vol.37, No.8, pp.51-58.  https://doi.org/10.7843/KGS.2021.37.8.51
  16. Jin, H., Ryu, B.H., Kang, J.M., and Lee, J. (2021), "Engineering Approach to Determination of the Segregation Potential by the Upward-step-freezing testing method", Cold Reg. Sci. Tech., Vol. 191, No.103361. 
  17. Jin, H., Ryu, B.H., and Lee, J. (2022), "Assessment of the Effect of Fines Content on Frost Susceptibility via Simple Frost Heave testing and SP determination", Geomech. Eng., Vol.30, No.4, pp. 393-399. 
  18. Julie, K. and Diane, L. (2013), "Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber", 51th Aerosp. Sci. Conf., Grapevine, TX, USA. 
  19. Julie, K. (2014), "Lunar Polar Environmental Testing: Regolith Simulant Conditioning", 7th Symp. Space Resour. Util., National Harbor, MD, USA. 
  20. Langseth, M.G., Keihm, S.J., and Peters, K. (1976), "Revised Lunar Heat-flow Values", Proc. Lunar Sci. Conf., 7th, USA, pp.3143-3171. 
  21. Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA. 
  22. Nagihara, S., Hedlund, M., Zacny, K., and Taylor, P.T. (2014), "Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths", Planet. Space Sci., Vol.92, pp.49-56.  https://doi.org/10.1016/j.pss.2013.12.012
  23. Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M. (1996), "The Clementine Bistatic Radar Experiment", Sci., Vol.274, No.5292, pp.1495-1498.  https://doi.org/10.1126/science.274.5292.1495
  24. Nozette, S., Spudis, P.D., Robinson, M.S., Bussey, D.B.J., Lichtenberg, C., and Bonner, R. (2001), "Integration of Lunar Polar Remotesensing Data Sets: Evidence for Ice at the Lunar South Pole", J. Geophys. Res.-Planet, Vol.106, No.E10, pp.23253-23266.  https://doi.org/10.1029/2000JE001417
  25. Sakatani, N., Ogawa, K., Iijima, Y., Arakawa, M., Honda, R., and Tanaka, S. (2017), "Thermal Conductivity Model for Powdered Materials under Vacuum based on Experimental Studies", AIP Adv., Vol.7, pp.015310-1-23. 
  26. Sakatani, N., Ogawa, K., Arakawa, M., and Tanaka, S. (2018), "Thermal Conductivity of Lunar Regolith Simulant JSC-1A under Vacuum", ICARUS, Vol.309, pp.13-24.  https://doi.org/10.1016/j.icarus.2018.02.027
  27. Selker, J. and Or, D. (2021), "Heat Flow and Thermal Effects in Soils. In Soil Hydrology and Biophysics", Oregon State University, Corvallis, OR, USA. 
  28. Wasilewski, T.G., Barcinski, T., and Barchewka, M. (2021), "Experimental Investigations of Thermal Properties of Icy Lunar Regolith and Their Influence on Phase Change Interface Movement", Planet. Space. Sci., Vol.200, pp.105197-1-19. 
  29. Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223.  https://doi.org/10.1038/s41561-019-0341-7
  30. Wexler, A. (1977), "Vapor Pressure Formulation for Ice", J. Res., Vol.81A. No.1, pp.5-20.