DOI QR코드

DOI QR Code

Filtration of dispersed nanoparticles using cyclone and ultrasonic atomization

초음파 무화 및 사이클론을 이용한 분산된 나노입자의 여과법

  • Jung, Jihee (General Utility Co. Ltd.) ;
  • Kim, Moojoon (Department of Physics, Pukyong National University) ;
  • Kim, Jungsoon (Department of Electrical Engineering, Tongmyong University)
  • Received : 2021.12.01
  • Accepted : 2021.12.28
  • Published : 2022.01.31

Abstract

In order to overcome the limitation of conventional nanoparticle dispersion methods such as sonicator or homogenizer, a filtration method using an ultrasonic atomization effect and cyclones was proposed in this study. A 0.5 wt% suspension was made with Al2O3 powder with an average diameter of 250 nm. The suspension was filtered by the proposed method after pre-dispersing using a sonicator and a homogenizer, respectively. As the result, in the case of the suspension after pre-dispersing with a sonicator, the particle size distribution of the filtered suspension started showing up a single normal distribution indicating the mode of the average diameter only after the 3rd cyclone process. On the other hand, in the case of the suspension with the homogenizer pre-dispersion, similar results appeared from the 2nd cyclone process. Filtration of various types of nanoparticles is expected to be possible by adjusting ultrasonic atomization frequency and manipulating the design of the cyclone.

기존의 나노입자 현탁액의 분산과정의 한계를 극복하여 단분산된 나노입자만으로 이루어진 현탁액을 얻기 위하여, 기존의 방법으로 전분산 처리된 현탁액을 다시 초음파 무화효과 및 사이클론을 이용하여 여과하는 방법을 제안하였다. 평균직경 250 nm인 Al2O3나노입자로 0.5 wt%인 현탁액을 만들어 초음파세척기 및 호모지나이저를 이용하여 각각 전처리 분산된 현탁액에 대하여 제안한 여과법을 적용하였다. 그 결과 초음파세척기로 전처리 분산한 경우 단분산된 나노입자 현탁액으로 여과하기 위해서는 종속 연결된 사이클론이 3개가 요구되는 반면, 호모저나이저로 전처리 분산된 현탁액의 경우는 2개의 사이클론으로도 가능함을 확인 하였다. 초음파 무화기 주파수의 조정과 사이클론의 설계 변경에 의해 다양한 종류의 나노입자에 대한 여과가 가능할 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1062399).

References

  1. S. K. Sahoo and V. Labhasetwar, "Nanotech approaches to drug delivery and imaging," Drug Discov. Today, 8, 1112-1120 (2003). https://doi.org/10.1016/S1359-6446(03)02903-9
  2. H. Watanabe, H. Kawade, T. Shirai, and M. Fuji, "Characterization of dispersion and coagulation behaviour of alumina and silica particles in the mixed slurry by a drain time measurement," J. Ceram. Soc. Jpn. 119, 185-188 (2011). https://doi.org/10.2109/jcersj2.119.185
  3. J. Son, S. Jung, and S. Choi, "Dispersion stability and anti-oxidation of an aqueous zirconium diboride slurry with a high solid loading," J. Ceram. Soc. Jpn. 121, 182-186 (2013). https://doi.org/10.2109/jcersj2.121.182
  4. O. Sakurada, M. Saito, T. Ohya, M. Hashiba, and Y. Takahashi, "Dispersion and fluidity of aqueous aluminum oxide suspension with titanate aqueous solution," J. Ceram. Soc. Jpn. 115, 846-849 (2007). https://doi.org/10.2109/jcersj2.115.846
  5. M. Iijima, "Surface modification techniques toward controlling the dispersion stability and particle-assembled structures of slurries," J. Ceram. Soc. Jpn. 125, 603-607 (2017). https://doi.org/10.2109/jcersj2.17093
  6. N. Iwata and T. Mori, "Determination of optimum slurry evaluation method for the prediction of BaTiO3 green sheet density," J. Ceram. Soc. Jpn. 125, 783-788 (2017). https://doi.org/10.2109/jcersj2.17099
  7. K. Yasuda, H. Honma, Z. Xu, Y. Asakura, and S. Koda, "Ultrasonic atomization amount for different frequencies," Jpn. J. Appl. Phys. 50, 07HE23 (2011). https://doi.org/10.7567/JJAP.50.07HE23
  8. T. Donnelly, J. Hogan, A. Mugler, M. Schubmehl, and N. Schommer, "Using ultrasonic atomization to produce an aerosol of micron-scale particles," Rev. Sci. Instrum. 76, 113301 (2005). https://doi.org/10.1063/1.2130336
  9. S. Lim, M. Kim, and J. Kim, "Analysis of an acoustic fountain generated by using an ultrasonic plane wave for different water depths," J. Korean Phys. Soc. 74, 336-339 (2019). https://doi.org/10.3938/jkps.74.336
  10. J. Kim, J. Kim, J. Yeom, K. Ha, and M. Kim, "Size distribution of nanoparticles in the droplets ultrasonically atomized from Al2O3 suspension," Jpn. J. Appl. Phys. 56, 07JD04 (2017). https://doi.org/10.7567/JJAP.56.07JD04
  11. J. Kim, J. Kim, K. Ha, and M. Kim, "Numerical analysis for the optimum condition of ultrasonic nebulizing," Jpn. J. Appl. Phys. 55, 07KE03 (2016). https://doi.org/10.7567/JJAP.55.07KE03
  12. J. Kim, J. Kim, J. Jung, M. Kim, and K. Ha, "Concentration of liquid sample for gamma-ray spectroscopy with ultrasonic nebulization," Jpn. J. Appl. Phys. 54, 07HE09 (2015). https://doi.org/10.7567/JJAP.54.07HE09
  13. A. Ogawa, "Characteristics of the pressure-drop, cut-size and the fractional collection efficiency for various kinds of the miniature cyclones," J. Jpn. Soc. Air Pollut. 17, 313-318 (1982).
  14. J. Kim, J. Kim, M. Kim, K. Ha, and A. Yamada, "Arrayed ultrasonic transducers on arc surface for plane wave synthesis," Jpn. J. Appl. Phys. 43, 3061-3062 (2004). https://doi.org/10.1143/JJAP.43.3061
  15. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2008), Chap. 12.