DOI QR코드

DOI QR Code

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization

열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향

  • Youn, Hee Sun (Department of Food Biotechnology and Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University) ;
  • Um, Byung Hwan (Department of Food Biotechnology and Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University)
  • 윤희선 (한경대학교 식품생명화학공학부 화학공학전공, 거대억새에너지사업단) ;
  • 엄병환 (한경대학교 식품생명화학공학부 화학공학전공, 거대억새에너지사업단)
  • Received : 2021.10.22
  • Accepted : 2021.11.30
  • Published : 2022.02.10

Abstract

The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

석탄화력발전소들은 여전히 저급 석탄인 lignite와 bituminous coal을 이용한 발전이 이루어지고 있지만, 이는 CO2와 같은 GHG를 배출하는 문제를 유발하고 고갈의 위험성이 있어 이를 대체할 에너지원이 필요하다. 이를 해결하기 위해 바이오매스를 이용한 hydrochar 생산이 주목받고 있다. 본 연구에서는 고품질 hydrochar의 생산을 위해 용매열법을 열수탄화에 적용하여 에탄올 수용액을 기반으로 진행되었다. 본 실험은 다양한 조건에 따른 영향을 파악하기 위해 케나프를 이용해 고액비(1:4, 1:8, 1:2), 반응온도(150~300 ℃)와 체류시간(15~120분)을 다양하게 변화하며 진행되었다. 또한 생산된 hydrochar의 특성을 파악하기 위해 EA, FT-IR. TGA와 SEM을 이용해 분석을 진행하였다. Hydrochar의 탄소 함량은 kenaf에 비해 48.11% 증가하였고, 휘발성 물질은 39.34%가 감소하였다. 추가적으로 반응온도에 따라 연료적 특성이 강화되는 것 또한 확인하였다. 본 연구에서 나타난 결과는 kenaf가 열수탄화와 용매열법을 통해 연료 대체재로써 변화하는 것을 확인하였으며, 이는 석탄의 새로운 대체재가 될 수 있는 가능성을 보였다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ014779)의 지원에 의해 이루어진 것임.

References

  1. I. Energy Agency, Statistics report Key World Energy Statistics 2020, IEA (2020).
  2. N. P. Say, Lignite-fired thermal power plants and SO2 pollution in Turkey, Energy Policy, 34, 2690-2701 (2006). https://doi.org/10.1016/j.enpol.2005.03.006
  3. M. Govindaraju, R. S. Ganeshkumar, V. R. Muthukumaran, and P. Visvanathan, Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development, Environ. Sci. Pollut. Res., 19, 1210-1223 (2012). https://doi.org/10.1007/s11356-011-0637-7
  4. J. Park, Woody pellet produce and sale rate, Korea Forest Service (2020).
  5. S. Hong, Analysis report on eco-friendly crops(kenaf), KONETIC (2018)
  6. S. Nizamuddin, H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. ali, An overview of effect of process parameters on hydrothermal carbonization of biomass, Renew. Sust. Energ. Rev., 73, 1289-1299 (2017). https://doi.org/10.1016/j.rser.2016.12.122
  7. S. T. Yoganandham, G. Sathyamoorthy, and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, In: Sustainable Seaweed Technologies. 191-205, Elsevier (2020).
  8. M. Wilk, M. Sliz, and M. Gajek, The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp, Renew. Energ., 177, 216-228 (2021). https://doi.org/10.1016/j.renene.2021.05.112
  9. S. Nizamuddin, N. M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu, and P. Ganesan, Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell, Fuel, 163, 88-97 (2016). https://doi.org/10.1016/j.fuel.2015.08.057
  10. G. Wang, J. Zhang, J. Y. Lee, X. Mao, L. Ye, W. Xu, X. Ning, N. Zhang, H. Teng, and C. Wang Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energ., 266 (2020).
  11. P. Grammelis, N. Margaritis, and E. Karampinis, Solid fuel types for energy generation: Coal and fossil carbon-derivative solid fuels, In: Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 29-58, Elsevier (2016).
  12. K. Fakkaew, T. Koottatep, S. Jairuang, and C. Polprasert, Hydrochar pellet produced from hydrothermal carbonization of fecal sludge, Biomass Convers. Biorefin. (2021).
  13. S. F. Shaikh, M. Ubaidullah, R. S. Mane, and A. M. Al-Enizi, Types, Synthesis methods and applications of ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, 51-82, Elsevier (2020).
  14. Y. T. Yang, X. X. Yang, Y. T. Wang, J. Luo, F. Zhang, W. J. Yang, and J. H. Chen, Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification, Fuel, 219, 166-175 (2018). https://doi.org/10.1016/j.fuel.2018.01.072
  15. Y. C. Zhao, L. Zhao, L. J. Mao, and B. H. Han, One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins, J. Mater. Chem. A, 1, 9456-9461 (2013). https://doi.org/10.1039/c3ta10227k
  16. S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 81, 1051-1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4
  17. L. Nazari, Z. Yuan, S. Souzanchi, M. B. Ray, and C. Xu, Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils, Fuel, 162, 74-83 (2015). https://doi.org/10.1016/j.fuel.2015.08.055
  18. S. K. Hoekman, A. Broch, and C. Robbins, Hydrothermal carbonization (HTC) of lignocellulosic biomass, Energy Fuels, 25, 1802-1810 (2011). https://doi.org/10.1021/ef101745n
  19. K. Raveendran, A. Ganesh, and K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987-998 (1996). https://doi.org/10.1016/0016-2361(96)00030-0
  20. S. Brand, F. Hardi, J. Kim, and D. J. Suh, Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol, Energy, 68, 420-427, Apr. (2014). https://doi.org/10.1016/j.energy.2014.02.086
  21. B. Babinszki, E. Jakab, Z. Sebestyen, M. Blazso, B. Berenyi, J. Kumar, B. B.Krishna, T. Bhaskar, and Z. Czegeny, Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products, J. Anal. Appl. Pyrol., 149 (2020).
  22. N. Xiang, P. Xu, N. Ran and T. Ye, Production of acetic acid from ethanol over CuCr catalysts: Via dehydrogenation-(aldehyde-water shift) reaction, RSC Adv., 7, 38586-38593 (2017). https://doi.org/10.1039/C7RA05922A
  23. A. Funke and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering, Biofuel. Bioprod. Biorefin., 6, 246-256 (2010). https://doi.org/10.1002/bbb.1324
  24. M. Zhou, J. Xu, J. Jiang, and B. K. Sharma, A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts, Energies, 11 (2018).
  25. H. B. Sharma, A. K. Sarmah, and B. Dubey, Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar, Renew. Sust. Energ. Rev., 123. Elsevier Ltd (2020).
  26. S. Rasam, M. Keshavarz Moraveji, A. Soria-Verdugo, and A. Salimi, Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar, Chem. Eng. Process., 159, 108236 (2021). https://doi.org/10.1016/j.cep.2020.108236
  27. X. Zhang, L. Zhang, and A. Li, Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization, J. Environ. Manage., 201, 52-62 (2017). https://doi.org/10.1016/j.jenvman.2017.06.018
  28. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781- 1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
  29. S. Basakcilardan Kabakci and S. S. Baran, Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars, Waste Manage., 100, 259-268 (2019). https://doi.org/10.1016/j.wasman.2019.09.021
  30. J. G. Lynam, M. T. Reza, W. Yan, V. R. Vasquez, and C. J. Coronella, Hydrothermal carbonization of various lignocellulosic biomass, Biomass Convers. Biorefin., 5, 173-181 (2015). https://doi.org/10.1007/s13399-014-0137-3
  31. R. K. Mishra and K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251, 63-74 (2018). https://doi.org/10.1016/j.biortech.2017.12.029
  32. W. Yan, S. Perez, and K. Sheng, Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization, Fuel, 196, 473-480 (2017). https://doi.org/10.1016/j.fuel.2017.02.015
  33. M. B. Samaila, B. G. Muhammad, A. H. Adam, A. Moumouni, and S. Bello, Characterization of Coal obtained from the Sahelian Regions of Nigeria and Niger Republic, J. Appl. Sci. Environ. Manage., 24, 299-302 (2020).