DOI QR코드

DOI QR Code

Inorganic Nanoparticles for Near-infrared-II Fluorescence Imaging

근적외선-II 형광 이미징을 위한 무기 나노입자

  • Park, Yong Il (School of Chemical Engineering, Chonnam National University)
  • 박용일 (전남대학교 화학공학부)
  • Received : 2022.01.05
  • Accepted : 2022.01.17
  • Published : 2022.02.10

Abstract

Fluorescence imaging is widely used to image cells or small animals due to its high temporal and spatial resolution. Because conventional fluorescence imaging uses visible light, the penetration depth of light within the tissue is low, phototoxicity may occur due to visible light, and the detection sensitivity is lowered due to interference by background autofluorescence. In order to overcome this limitation, long-wavelength light should be used, and fluorescence imaging using near-infrared-I (NIR-I) in the region of 700~900 nm has been developed. To further improve imaging quality, researchers are interested in using a longer wavelength light, near-infrared-II (NIR-II) ranging from 1000 to 1700 nm. In the NIR-II region, light scattering is further minimized, and the penetration depth of light in the tissue is improved up to about 10 mm, and autofluorescence of the tissue is reduced, enabling high sensitivity and resolution fluorescence imaging. In this review, among various NIR-II fluorescence imaging probes, inorganic nanoparticle-based probes with excellent photostability and easily tunable emission wavelength were described, focusing on single-walled carbon nanotubes, quantum dots, and lanthanide nanoparticles.

형광 이미징은 시간 분해능과 공간 해상도가 높기 때문에 기초연구에서 세포나 소동물 이미징에 널리 활용된다. 기존의 형광 이미징은 가시광선 영역의 광원을 활용하기 때문에 조직 내 광투과도가 낮고, 광원에 의한 광독성이 생길 수 있으며, 자가형광에 의한 간섭으로 검출 민감도가 떨어지는 한계가 있다. 이러한 점을 개선하기 위해 에너지가 낮은 장파장의 광원을 활용하고자 하며, 700~900 nm 영역을 활용하는 근적외선-I 형광 이미징이 개발되었고, 이미징 성능을 대폭 향상시키기 위해서 1000~1700 nm 영역의 장파장을 이용하는 근적외선-II 이미징이 연구자들의 관심을 받고 있다. 근적외선-II 영역은 광산란이 최소화되어 생체조직 내 투과도를 약 10 mm까지 향상시킬 수 있고, 생체조직의 자가형광도 최소화되어 고민감도와 고해상도의 형광 이미징이 가능하다. 본 총설에서는 다양한 근적외선-II 형광 이미징 탐침 중에서 광안정성이 뛰어나고 발광 파장 조절이 용이한 무기 나노입자 기반 탐침에 대해 살펴보았고, 그 중에서 단층 탄소 나노튜브와 양자점 및 란탄족 나노입자에 대해 중점적으로 기술하였다.

Keywords

Acknowledgement

이 논문은 한국연구재단(과제번호: 2021R1I1A3047374)과 전남대학교 학술연구비(과제번호: 2020-1873)의 지원에 의하여 연구되었음

References

  1. D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Central Sci., 4, 324-336 (2018). https://doi.org/10.1021/acscentsci.7b00574
  2. G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 0010 (2017). https://doi.org/10.1038/s41551-016-0010
  3. F. Ding, Y. Fan, Y. Sun, and F. Zhang, Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging, Adv. Healthcare Mater., 8, 1900260 (2019). https://doi.org/10.1002/adhm.201900260
  4. F. Ren, Z. Jiang, M. Han, H. Zhang, B. Yun, H. Zhu, and Z. Li, NIR-II fluorescence imaging for cerebrovascular diseases, View, 2, 20200128 (2021). https://doi.org/10.1002/VIW.20200128
  5. F. Ding, Y. Zhan, X. Lu, and Y. Sun, Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging, Chem. Sci., 9, 4370-4380 (2018). https://doi.org/10.1039/C8SC01153B
  6. D. Kim, N. Lee, Y. I. Park, and T. Hyeon, Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem., 28, 115-123 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00654
  7. K. Welsher, S. P. Sherlock, and H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window, Proc. Natl. Acad. Sci. U. S. A., 108, 8943-8948 (2011). https://doi.org/10.1073/pnas.1014501108
  8. S. Diao, J. L. Blackburn, G. Hong, A. L. Antaris, J. Chang, J. Z. Wu, B. Zhang, K. Cheng, C. J. Kuo, and H. Dai, Fluorescence imaging in vivo at wavelengths beyond 1500 nm, Angew. Chem. Int. Ed., 54, 14758-14762 (2015). https://doi.org/10.1002/anie.201507473
  9. X. Dang, L. Gu, J. Qi, S. Correa, G. Zhang, A. M. Belcher, and P. T. Hammond, Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer, Proc. Natl. Acad. Sci. U. S. A., 113, 5179-5184 (2016). https://doi.org/10.1073/pnas.1521175113
  10. C.-W. Lin, H. Yang, S. R. Sanchez, W. Mao, L. Pang, K. M. Beckingham, R. C. Bast, and R. B. Weisman, In vivo optical detection and spectral triangulation of carbon nanotubes, ACS Appl. Mater. Interfaces, 9, 41680-41690 (2017). https://doi.org/10.1021/acsami.7b12916
  11. H.-Y. Yang, Y.-W. Zhao, Z.-Y. Zhang, H.-M. Xiong, and S.-N. Yu, One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window, Nanotechnology, 24, 055706 (2013). https://doi.org/10.1088/0957-4484/24/5/055706
  12. G. Chen, F. Tian, Y. Zhang, Y. Zhang, C. Li, and Q. Wang, Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots, Adv. Funct. Mater., 24, 2481-2488 (2014). https://doi.org/10.1002/adfm.201303263
  13. H. D. A. Santos, I. Z. Gutierrez, Y. L. Shen, J. Lifante, E. Ximendes, M. Laurenti, D. Mendez-Gonzalez, S. Melle, O. G. Calderon, E. L. Cabarcos, N. Fernandez, I. Chaves-Coira, D. Lucena-Agell, L. Monge, M. D. Mackenzie, J. Marques-Hueso, C. M. S. Jones, C. Jacinto, B. del Rosal, A. K. Kar, J. Rubio-Retama, and D. Jaque, Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging, Nat. Commun., 11, 12 (2020). https://doi.org/10.1038/s41467-019-13875-y
  14. Y. Kong, J. Chen, H. Fang, G. Heath, Y. Wo, W. Wang, Y. Li, Y. Guo, S. D. Evans, S. Chen, and D. Zhou, Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window, Chem. Mater., 28, 3041-3050 (2016). https://doi.org/10.1021/acs.chemmater.6b00208
  15. B. Huang, J. Hu, H. Li, M.-Y. Luo, S. Chen, M. Zhang, Z.-J. Sun, and R. Cui, Near-infrared IIb emitting nanoprobe for high-resolution real-time imaging-guided photothermal therapy triggering enhanced anti-tumor immunity, ACS Appl. Bio Mater., 3, 1636-1645 (2020). https://doi.org/10.1021/acsabm.9b01202
  16. M. Chen, S. Feng, Y. Yang, Y. Li, J. Zhang, S. Chen, and J. Chen, Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging, Nano Res., 13, 3123-3129 (2020). https://doi.org/10.1007/s12274-020-2982-7
  17. X. Yang, Z. Wang, H. Huang, S. Ling, R. Zhang, Y. Zhang, G. Chen, C. Li, and Q. Wang, A targeted activatable NIR-IIb nanoprobe for highly sensitive detection of ischemic stroke in a photo-thrombotic stroke model, Adv. Healthcare Mater., 10, 2001544 (2021). https://doi.org/10.1002/adhm.202001544
  18. O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, Next-generation in vivo optical imaging with short-wave infrared quantum dots, Nat. Biomed. Eng., 1, 0056 (2017). https://doi.org/10.1038/s41551-017-0056
  19. X. Hao, C. Li, Y. Zhang, H. Wang, G. Chen, M. Wang, and Q. Wang, Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window, Adv. Mater., 30, 1804437 (2018). https://doi.org/10.1002/adma.201804437
  20. Y. Zhang, H. Yang, X. An, Z. Wang, X. Yang, M. Yu, R. Zhang, Z. Sun, and Q. Wang, Controlled synthesis of Ag2Te@Ag2S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window, Small, 16, 2001003 (2020). https://doi.org/10.1002/smll.202001003
  21. S. Sarkar, P. Le, J. Geng, Y. Liu, Z. Han, M. U. Zahid, D. Nall, Y. Youn, P. R. Selvin, and A. M. Smith, Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy, J. Am. Chem. Soc., 142, 3449-3462 (2020). https://doi.org/10.1021/jacs.9b11567
  22. Z. M. Tao, X. N. Dang, X. Huang, M. D. Muzumdar, E. S. Xu, N. M. Bardhan, H. Q. Song, R. G. Qi, Y. J. Yu, T. Li, W. Wei, J. Wyckoff, M. J. Birrer, A. M. Belcher, and P. P. Ghoroghchian, Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence, Biomaterials, 134, 202-215 (2017). https://doi.org/10.1016/j.biomaterials.2017.04.046
  23. Y. X. Liu, H. M. Fan, Q. W. Guo, A. Q. Jiang, X. X. Du, and J. Zhou, Ultra-small pH-responsive Nd-doped NaDyF4 nanoagents for enhanced cancer theranostic by in situ aggregation, Theranostics, 7, 4217-4228 (2017). https://doi.org/10.7150/thno.21557
  24. Q. H. Yang, X. L. Li, Z. L. Xue, Y. B. Li, M. Y. Jiang, and S. J. Zeng, Short-wave near-infrared emissive GdPO4:Nd3+ theranostic probe for in vivo bioimaging beyond 1300 nm, RSC Adv., 8, 12832-12840 (2018). https://doi.org/10.1039/C7RA12864A
  25. X. Li, M. Jiang, Y. Li, Z. Xue, S. Zeng, and H. Liu, 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging, Mater. Sci. Eng. C, 100, 260-268 (2019). https://doi.org/10.1016/j.msec.2019.02.106
  26. S. He, J. Song, J. Liu, L. Liu, J. Qu, and Z. Cheng, Enhancing photoacoustic intensity of upconversion nanoparticles by photo-switchable azobenzene-containing polymers for dual NIR-II and photoacoustic imaging in vivo, Adv. Opt. Mater., 7, 1900045 (2019). https://doi.org/10.1002/adom.201900045
  27. S. Cheng, L. Liu, Q. Yang, Y. Li, and S. Zeng, In vivo optical bioimaging by using Nd-doped LaF3 luminescent nanorods in the second near-infrared window, J. Rare Earths, 37, 931-936 (2019). https://doi.org/10.1016/j.jre.2018.11.014
  28. M. Zhao, B. Li, Y. Wu, H. He, X. Zhu, H. Zhang, C. Dou, L. Feng, Y. Fan, and F. Zhang, A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma, Adv. Mater., 32, 2001172 (2020). https://doi.org/10.1002/adma.202001172
  29. L. Wu, J. Hu, Q. Zou, Y. Lin, D. Huang, D. Chen, H. Lu, and H. Zhu, Synthesis and optical properties of a Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications, Nanoscale, 12, 14180-14187 (2020). https://doi.org/10.1039/d0nr03269g
  30. M. Y. Jiang, H. R. Liu, S. J. Zeng, and J. H. Hao, A general in situ growth strategy of designing theranostic NaLnF4@Cu2-xS nanoplatform for in vivo NIR-II optical imaging beyond 1500 nm and photothermal therapy, Adv. Ther., 2, 10 (2019).
  31. H. Li, X. Wang, X. Li, S. Zeng, and G. Chen, Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging, Chem. Mater., 32, 3365-3375 (2020). https://doi.org/10.1021/acs.chemmater.9b04784
  32. R. Lv, Y. Wang, B. Lin, X. Peng, J. Liu, W. Lu, and J. Tian, Targeted luminescent probes for precise upconversion/NIR II luminescence diagnosis of lung adenocarcinoma, Anal. Chem., 93, 4984-4992 (2021). https://doi.org/10.1021/acs.analchem.1c00374
  33. H. Kantamneni, S. Barkund, M. Donzanti, D. Martin, X. Zhao, S. He, R. E. Riman, M. C. Tan, M. C. Pierce, C. M. Roth, V. Ganapathy, and P. V. Moghe, Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo, BMC Cancer, 20, 1082 (2020). https://doi.org/10.1186/s12885-020-07604-8
  34. C. Wang, H. Lin, X. Ge, J. Mu, L. Su, X. Zhang, M. Niu, H. Yang, and J. Song, Dye-sensitized downconversion nanoprobes with emission beyond 1500 nm for ratiometric visualization of cancer redox state, Adv. Funct. Mater., 31, 2009942 (2021). https://doi.org/10.1002/adfm.202009942
  35. Z. Yu, B. Musnier, K. D. Wegner, M. Henry, B. Chovelon, A. Desroches-Castan, A. Fertin, U. Resch-Genger, S. Bailly, J.-L. Coll, Y. Usson, V. Josserand, and X. Le Guevel, High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters, ACS Nano, 14, 4973-4981 (2020). https://doi.org/10.1021/acsnano.0c01174
  36. S. Tsuboi and T. Jin, Fluorescent gold nanoclusters for in vivo shortwave-infrared imaging, ECS J. Solid State Sci. Technol., 10, 096012 (2021). https://doi.org/10.1149/2162-8777/ac258c
  37. Y. Jiang, J. Li, X. Zhen, C. Xie, and K. Pu, Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study, Adv. Mater., 30, 1705980 (2018). https://doi.org/10.1002/adma.201705980
  38. Y. Dai, H. Zhao, K. He, W. Du, Y. Kong, Z. Wang, M. Li, Q. Shen, P. Sun, and Q. Fan, NIR-II excitation phototheranostic nanomedicine for fluorescence/photoacoustic tumor imaging and targeted photothermal-photonic thermodynamic therapy, Small, 17, 2102527 (2021). https://doi.org/10.1002/smll.202102527
  39. Y. Jiang, P. K. Upputuri, C. Xie, Z. Zeng, A. Sharma, X. Zhen, J. Li, J. Huang, M. Pramanik, and K. Pu, Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging, Adv. Mater., 31, 1808166 (2019). https://doi.org/10.1002/adma.201808166
  40. K. Shou, Y. Tang, H. Chen, S. Chen, L. Zhang, A. Zhang, Q. Fan, A. Yu, and Z. Cheng, Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo second near-infrared window imaging and image-guided tumor surgery, Chem. Sci., 9, 3105-3110 (2018). https://doi.org/10.1039/C8SC00206A
  41. Y. Yang, J. Chen, Y. Yang, Z. Xie, L. Song, P. Zhang, C. Liu, and J. Liu, A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas, Nanoscale, 11, 7754-7760 (2019). https://doi.org/10.1039/c9nr00552h
  42. W. Zhang, X. Sun, T. Huang, X. Pan, P. Sun, J. Li, H. Zhang, X. Lu, Q. Fan, and W. Huang, 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy, Chem. Commun., 55, 9487-9490 (2019). https://doi.org/10.1039/c9cc04196f
  43. Z. Zhang, X. Fang, Z. Liu, H. Liu, D. Chen, S. He, J. Zheng, B. Yang, W. Qin, X. Zhang, and C. Wu, Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging, Angew. Chem. Int. Ed., 59, 3691-3698 (2020). https://doi.org/10.1002/anie.201914397
  44. H. Chen, K. Shou, S. Chen, C. R. Qu, Z. Wang, L. Jiang, M. Zhu, B. Ding, K. Qian, A. Y. Ji, H. Lou, L. Tong, A. Hsu, Y. Wang, D. W. Felsher, Z. Hu, J. Tian, and Z. Cheng, Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging, Adv. Mater., 33, 2006902 (2021). https://doi.org/10.1002/adma.202006902
  45. J. Qi, N. Alifu, A. Zebibula, P. Wei, J. W. Y. Lam, H.-Q. Peng, R. T. K. Kwok, J. Qian, and B. Z. Tang, Highly stable and bright AIE dots for NIR-II deciphering of living rats, Nano Today, 34, 100893 (2020). https://doi.org/10.1016/j.nantod.2020.100893
  46. W. Qin, N. Alifu, J. W. Y. Lam, Y. Cui, H. Su, G. Liang, J. Qian, and B. Z. Tang, Facile synthesis of efficient luminogens with AIE features for three-photon fluorescence imaging of the brain through the intact skull, Adv. Mater., 32, 2000364 (2020). https://doi.org/10.1002/adma.202000364
  47. S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen, X. Cui, Y. Wan, Y. Huang, J. Chen, Z. Liu, L. Wang, and C.-S. Lee, Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow, Adv. Mater., 32, 2001146 (2020). https://doi.org/10.1002/adma.202001146
  48. W. Zhang, W. Deng, H. Zhang, X. Sun, T. Huang, W. Wang, P. Sun, Q. Fan, and W. Huang, Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy, Biomaterials, 243, 119934 (2020). https://doi.org/10.1016/j.biomaterials.2020.119934
  49. Z. Zhang, W. Xu, M. Kang, H. Wen, H. Guo, P. Zhang, L. Xi, K. Li, L. Wang, D. Wang, and B. Z. Tang, An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy, Adv. Mater., 32, 2003210 (2020). https://doi.org/10.1002/adma.202003210
  50. F. Ding, Z. Chen, W. Y. Kim, A. Sharma, C. Li, Q. Ouyang, H. Zhu, G. Yang, Y. Sun, and J. S. Kim, A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(II) metallacycle for efficient cancer imaging and therapy, Chem. Sci., 10, 7023-7028 (2019). https://doi.org/10.1039/c9sc02466b
  51. L. Li, C. Shao, T. Liu, Z. Chao, H. Chen, F. Xiao, H. He, Z. Wei, Y. Zhu, H. Wang, X. Zhang, Y. Wen, B. Yang, F. He, and L. Tian, An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics, Adv. Mater., 32, 2003471 (2020). https://doi.org/10.1002/adma.202003471
  52. T. Li, L. Liu, P. Xu, P. Yuan, Y. Tian, Q. Cheng, and L. Yan, Multifunctional nanotheranostic agent for NIR-II imaging-guided synergetic photothermal/photodynamic therapy, Adv. Ther., 4, 2000240 (2021). https://doi.org/10.1002/adtp.202000240
  53. Y. Tang, Y. Li, X. Hu, H. Zhao, Y. Ji, L. Chen, W. Hu, W. Zhang, X. Li, X. Lu, W. Huang, and Q. Fan, "Dual lock-and-key"- controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window, Adv. Mater., 30, 1801140 (2018). https://doi.org/10.1002/adma.201801140
  54. Q. Zhu, F. Sun, T. L. Li, M. Zhou, J. Ye, A. Ji, H. Wang, C. Ding, H. Chen, Z. Xu, and H. Yu, Engineering oxaliplatin prodrug nanoparticles for second near-infrared fluorescence imaging-guided immunotherapy of colorectal cancer, Small, 17, 2007882 (2021). https://doi.org/10.1002/smll.202007882
  55. K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol., 4, 773-780 (2009). https://doi.org/10.1038/nnano.2009.294
  56. G. Hong, S. Diao, A. L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chem. Rev., 115, 10816-10906 (2015). https://doi.org/10.1021/acs.chemrev.5b00008
  57. Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, Synthesis and optical properties of emission-tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window, RSC Adv., 4, 41164-41171 (2014). https://doi.org/10.1039/C4RA06098A
  58. Z. Ma, M. Zhang, J. Yue, C. Alcazar, Y. Zhong, T. C. Doyle, H. Dai, and N. F. Huang, Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution, Adv. Funct. Mater., 28, 1803417 (2018). https://doi.org/10.1002/adfm.201803417
  59. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region, Angew. Chem. Int. Ed., 51, 9818-9821 (2012). https://doi.org/10.1002/anie.201206059
  60. C. Li, L. Cao, Y. Zhang, P. Yi, M. Wang, B. Tan, Z. Deng, D. Wu, and Q. Wang, Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe, Small, 11, 4517-4525 (2015). https://doi.org/10.1002/smll.201500997
  61. Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivoimaging, Chem. Soc. Rev., 44, 1302-1317 (2015). https://doi.org/10.1039/c4cs00173g
  62. D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, Rare-earth-doped biological composites as in vivo shortwave infrared reporters, Nat. Commun., 4, 2199 (2013). https://doi.org/10.1038/ncomms3199
  63. Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200-7206 (2013). https://doi.org/10.1021/nn402601d
  64. F. Ren, L. Ding, H. Liu, Q. Huang, H. Zhang, L. Zhang, J. Zeng, Q. Sun, Z. Li, and M. Gao, Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature, Biomaterials, 175, 30-43 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.021
  65. Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N. F. Huang, J. Luo, Z. Hu, and H. Dai, Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm, Nat. Commun., 8, 737 (2017). https://doi.org/10.1038/s41467-017-00917-6
  66. Y. Zhong, Z. Ma, F. Wang, X. Wang, Y. Yang, Y. Liu, X. Zhao, J. C. Li, H. Du, M. Zhang, Q. Cui, S. Zhu, Q. Sun, H. Wan, Y. Tian, Q. Liu, W. Wang, K. C. Garcia, and H. Dai, In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles, Nat. Biotechnol., 37, 1322-1331 (2019). https://doi.org/10.1038/s41587-019-0262-4
  67. Y. I. Park, S. H. Nam, J. H. Kim, Y. M. Bae, B. Yoo, H. M. Kim, K.-S. Jeon, H. S. Park, J. S. Choi, K. T. Lee, Y. D. Suh, and T. Hyeon, Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics, J. Phys. Chem. C, 117, 2239-2244 (2013). https://doi.org/10.1021/jp3105248
  68. G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Agren, and P. N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal, Nano Lett., 15, 7400-7407 (2015). https://doi.org/10.1021/acs.nanolett.5b02830
  69. W. Shao, G. Chen, A. Kuzmin, H. L. Kutscher, A. Pliss, T. Y. Ohulchanskyy, and P. N. Prasad, Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window, J. Am. Chem. Soc., 138, 16192-16195 (2016). https://doi.org/10.1021/jacs.6b08973