DOI QR코드

DOI QR Code

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments

에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜

  • Choi, Jeong-Hee (Division of Software Liberal Arts, Stokes College, Mokwon University)
  • 최정희 (목원대학교 스톡스대학 SW교양학부)
  • Received : 2021.12.15
  • Accepted : 2022.02.20
  • Published : 2022.02.28

Abstract

Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.

최근 사물인터넷(Internet of Things, IoT) 기기 사용 증가로 인해 클라우드 컴퓨팅 서버로 전송해 처리하는 데이터양이 급증하고, 그 결과 네트워크 관련 문제점(지연, 서버의 과부하 및 보안 위협)들이 크게 대두되고 있다. 특히, 연산 능력이 클라우드 컴퓨팅보다 낮은 에지 컴퓨팅은 수많은 IoT 기기들을 손쉽게 인증할 수 있는 경량화된 인증 알고리즘이 필요하다. 본 논문에서는 IoT와 에지 장치 간 익명성과 순방향·역방향의 비밀성을 보장하고 중간자 공격과 재전송 공격에 안정적이며, 에지 장치와 IoT 기기 특성에 적합한 경량화 알고리즘의 키 동의 프로토콜을 제안하였고, 제안한 키 동의 프로토콜을 기존 연구와 비교·분석한 결과 IoT 기기와 에지 장치에서 효율적으로 사용 가능한 경량화 프로토콜임을 보였다.

Keywords

References

  1. V. Hassija. V. Chamola. V. Saxena. D. Jain. P. Goyal & B. Sikdar. (2019). A Survey on IoT Security Application Areas Security Threats and Solution Architectures, IEEE Access, .7, 82721-82743. https://doi.org/10.1109/access.2019.2924045
  2. M. Endler. A. Silva & R. A.M.S. Cruz. (2017). An Approach for Secure Edge Computing in the Internet of Things, 1st Cyber Security in Networking Conference(CSNet), 1-8.
  3. S. H. Kim. D. H. Kim. H. S. Oh. H. S. Jeon & H. J. Park. (2016). The Data Collection Solution Based on MQTT for Stable IoT platforms, Journal of the Korea Institute of Information and Communication Enginering, 20(4), 728-738. https://doi.org/10.6109/jkiice.2016.20.4.728
  4. A. Al-Dulaimy. Y. Sharma. M. G. Khan & J. Taheri. (2020). Introduction to edge computing, Institution of Engineering and Technology. 1-24. DOI: 10.1049/PBPC033E_ch1
  5. M. Nakkar. R. AITawy & A. Youseef. (2021). Lightweight Authentication and Key Agreement Protocol for Edge Computing Applica, IEEE 7th World Forum on Internet of Things(WF-IoT), 415-420. DOI: 10.1109/WF-IoT51360.2021.9595939
  6. A. Erroutbi. A. E. Hanjri & A. Sekkaki. (2019). Secure and Lightweight HMAC Mutual Authentication Protocol for Communication between IoT Devices and Fog Nodes, 5th IEEE International Smart Cites Conference ISC2. 251-257.
  7. L. Loffi. C. M. Westphall. L. D. Grudtner & C. B. Westphall. (2019). Mutual Authentication for IoT in the Context of Fog Computing. 11th International Conference on Communication System & Networks(COMSNETS). 367-374.
  8. M. N. Aman. K. C. Chua & B. Sikdar. (2017). Mutual Authentication in IoT System Using Physical Unclonable Functions. IEEE Internet of Things Journal, 4(5), 1327-1340. https://doi.org/10.1109/JIOT.2017.2703088
  9. A. Shahidinejad. M. G. Arani. A. Souri. M. Shojafar & S. Kumari. (2020). Light-Edge: A Lightweight Authentication Protocol for IoT Devices in an Edge-Cloud Environment, IEEE Consumer Electronics Magazine, 1-6. https://doi.org/10.1109/MCE.2017.2770231
  10. M. H. Ibrahim. (2016). Octopus: An Edge-Fog Mutual Authentication Scheme, International Journal of Network Security, International Journal of Network Security, 18(6). 1089-1101.
  11. C. Y. Weng. C. T. Li. C. L. Chen & C. C. Lee. (2021). Lightweight Anonymous Authentication and Secure Communication Scheme for fog Computing Service, IEEE Access, .9. 145522-145537. https://doi.org/10.1109/ACCESS.2021.3123234
  12. J. Y. Choi. (2019). A study on the application of blickchain to the edge computing-based Internet of Things. Journal of Digital Convergence. 17(12), 219-228. https://doi.org/10.14400/JDC.2019.17.12.219
  13. K. Kaur. S. Garg. G. Kaddoum. M. Guizani & D. N. K. Jayakody. (2019). A Lightweight and Privacy-Preserving Authentication Protocol for Mobile Edge Computing. IEEE Global Communications Conference(GLOBECOM), 1-6. DOI : 10.1109/GLOBECOM38437.2019.9013856
  14. M. A. Rakeei & F. Moazami. (2020), An efficient and provably secure authenticated key agreement scheme for mbile edge computing, IACR Criptol., 1-12
  15. Y. Li, Q.Cheng & X. Liu. (2021). A Secure Anonymous Identity-Based Scheme in New Authentication Architecture for Mobile Edge Computing, IEEE Systems Journal, 15(1), 935-946 https://doi.org/10.1109/JSYST.2020.2979006
  16. Y. Xiao. Y. Jia. C. Liu. X. Cheng. & J. Yu. (2019), Edge Computing Security: State of the Art and Challenges, Preceedings of the IEEE, 107(8), 1608-1631 https://doi.org/10.1109/JPROC.2019.2918437
  17. J. H. Hong. K. C. Lee & S. Y. Lee. (2020). Trends in Edge Computing Technology, ETRI Electronics and Telecommunications Tends, 35(6). 78-87.