DOI QR코드

DOI QR Code

Analysis of Greenhouse Gas Research Trends of Hydropower Dams: Focusing on Foreign Cases

수력발전댐에서 온실가스 연구 동향 분석 : 국외 사례를 중심으로

  • Park, Kyoung-deok (Institute of Environmental Geosciences, Pukyong National University) ;
  • Jo, Won Gi (Institute of Environmental Geosciences, Pukyong National University) ;
  • So, Yoon Hwan (Institute of Environmental Geosciences, Pukyong National University) ;
  • Kang, Dong-hwan (Institute of Environmental Geosciences, Pukyong National University)
  • 박경덕 (부경대학교 지질환경연구소) ;
  • 조원기 (부경대학교 지질환경연구소) ;
  • 소윤환 (부경대학교 지질환경연구소) ;
  • 강동환 (부경대학교 지질환경연구소)
  • Received : 2021.12.29
  • Accepted : 2022.01.28
  • Published : 2022.02.28

Abstract

This research summarizes the generating factors of greenhouse gas (carbon dioxide, methane, nitrous oxide) in hydropower dams and related domestic/foreign researches. Microorganisms and eutrophication are the main factors in greenhouse gases in hydropower dam reservoirs. The greenhouse gas emission from the hydropower dam is affected by meteorological factors and dam operation periods, and greenhouse gases are also emitted from the outlets. The fluxes of greenhouse gas emission from the hydropower dams were -926~180,806 mg CO2 m-2d-1, -0.19~3800 mg CH4 m-2d-1, and 0.01~16.1 mg N2O m-2d-1. In South Korea, the study on the greenhouse gas emission from Korean hydropower dams has been rarely, and therefore it is inquired. This research suggested the methods on the greenhouse gas emission from Korean hydropower dams and flux calculation.

Keywords

Acknowledgement

본 논문은 "2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(2020R1I1A1A01073860)" 및 "2021년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터 사업(2021R1A6C101A415)"의 지원을 받아 수행되었습니다.

References

  1. Abe, D. S., Sidagis-Galli, C., Tundisi, T. M., Tundisi, J. E. M., Grimberg, D. E., Medeiros, G. R., Teixeira-Silva, V., Tundisi, J. G., 2009, The effect of eutrophication on greenhouse gas emissions in three reservoirs of the Middle Tiete River, southeastern Brazil, Verh. lnternat. Verein. Limnol., 30, 822-825.
  2. Ahn, C. Y., Chung, A. S., Oh, H. M., 2002, Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir, Hydrobiologia, 474, 117-124. https://doi.org/10.1023/A:1016573225220
  3. Ai, H., Qiu, Y., He, Q., He, Y., Yang, C., Kang, L., Luo, H., Li, W., Mao, Y., Hu, M., Li, H., 2019, Turn the potential greenhouse gases into biomass in harmful algal blooms waters: a microcosm study, Sci. Total Environ., 655, 520-528. https://doi.org/10.1016/j.scitotenv.2018.11.262
  4. An, K. G., Jones, J. R., 2000, Factors regulation bluegreen dominance in a reservoir directly influenced by the Asian monsoon. Hydrobiologia, 432, 37-48. https://doi.org/10.1023/A:1004077220519
  5. Baek, J. S., Youn, S. J., Kim, H. N., Sim, Y. B., Yoo, S. J., Im, J. K., 2019, Effects of environmental factors on phytoplankton succession and community structure in Lake Chuncheon, Korean J. Environ. Ecol., 52, 71-80. https://doi.org/10.11614/KSL.2019.52.2.071
  6. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., Enrich-Prast, A., 2011, Freshwater methane emissions offset the continental carbon sink. Science 331, 50. https://doi.org/10.1126/science.1196808
  7. Bates, B., Kundzewicz, Z. W., Wu, S., Palutikof, J., 2008, Climate change and water - IPCC Technical Paper VI, IPCC Secretariat, Geneva.
  8. Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., Thomas, S. M., 2011, Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci., 108, 214-219. https://doi.org/10.1073/pnas.1011464108
  9. Bevelhimer, M. S., Stewart, A. J., Fortner, A. M., Phillips, J. R., Mosher, J. J., 2016, CO2 is dominant greenhouse gas emitted from six hydropower reservoirs in southeastern United States during peak summer emissions, Water, 8, 15. https://doi.org/10.3390/w8010015
  10. Bizic, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Gunthel, M., Muro-Pastor, A. M., Eckert W., Urich, T., Keppler, F., 2020, Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6, eaax5343.
  11. Bothe, H., Schmitz, O., Yates, M. G., Newton, W. E., 2010, Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria, Microbiol. Mol. Biol. Rev., 74, 529-551. https://doi.org/10.1128/MMBR.00033-10
  12. Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y., Peltier, G., Algal photosynthesis converts nitric oxide into nitrous oxide, PNAS, 117, 2704-2709.
  13. Calhoun, A., King, G. M., 1997, Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes, Appl. Environ. Microbiol., 63, 3051-3058. https://doi.org/10.1128/aem.63.8.3051-3058.1997
  14. Chen, M., Chang, L., Zhang, J., Guo, F., Vymazal, J., He, Q., Chen, Y., 2020, Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions, Environ Sci Ecotechnol., 4, 100063. https://doi.org/10.1016/j.ese.2020.100063
  15. Chung, H., Son, M., Ryu, H. S., Park, C. H., Lee, R., Cho, M., Lim, C., Park, J., Kim, K., 2019, Variation of cyanobacteria occurrence pattern and environmental factors in Lake Juam, Korean J. Environ. Biol., 37, 640-651. https://doi.org/10.11626/KJEB.2019.37.4.640
  16. Chungbuk National University, 2019, Development and Applications of AI/ML Models for Estimating Carbon Net Atmospheric Flux from Reservoir.
  17. Dakos, V., Matthews, B., Hendry, A. P., Levine, J., Loeuille, N., Norberg, J., Loeuille, N., Norberg, J., Nosil, P., Scheffer, M., De Meester, L., 2019, Ecosystem tipping points in an evolving world, Nat. Ecol. Evol., 3, 355-362. https://doi.org/10.1038/s41559-019-0797-2
  18. Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Dos Santos, M. A., Arie Vonk, J., 2016, Greenhouse gas emissions from reservoir water surfaces; A new global synthesis, BioScience, 66, 949-964. https://doi.org/10.1093/biosci/biw117
  19. Demarty, M., Bastien, J., Tremblay, A., Hesslein, R. H., Gill, R., 2009, Greenhouse gas emissions from boreal reservoirs in Manitoba and Que'bec, Canada, measured with automated systems, Environ. Sci. Technol., 43, 8908-8915. https://doi.org/10.1021/es8035658
  20. Dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., Dos Santos, E. O., 2006, Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants, Energy Policy, 34, 481-488. https://doi.org/10.1016/j.enpol.2004.06.015
  21. Duchemin, E., Lucotte, M., Canuel, R., 1999, Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies, Environ. Sci. Technol., 33, 350-357. https://doi.org/10.1021/es9800840
  22. Duchemin, E., Lucotte, M., Canuel, R., Chamberland, A., 1995, Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. Global Biogeochem. Cycles, 9, 529-540. https://doi.org/10.1029/95GB02202
  23. Fearnside, P. M., 1997, Greenhouse-gas emissions from Amazonian hydroelectric reservoirs the example of Brazil's Tucurui Dam as compared to fossil fuel alternatives, Environ. Conserv., 24, 64-75. https://doi.org/10.1017/s0376892997000118
  24. Fearnside, P. M., 2004, Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly 'clean' energy source an editorial comment, Clim. Change, 66, 1-8. https://doi.org/10.1023/B:CLIM.0000043174.02841.23
  25. Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J. F., Labroue, L., Richard, S., Gosse, P., 1997, Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana, Global Biogeochem. Cycles, 11, 471-483. https://doi.org/10.1029/97GB01625
  26. GDW, 2019, Global Reservoir and Dam Database (GRanD), http://globaldamwatch.org/grand.
  27. Giles, J., Methane quashes green credentials of hydropower, Nature, 444, 524-525.
  28. Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., Watson, S. W., 1980, Production of N2O- and N2O by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40, 526-532. https://doi.org/10.1128/aem.40.3.526-532.1980
  29. Guerin, F., Abril, G., Tremblay, A., Delmas, R., 2008, Nitrous oxide emissions from tropical hydroelectric reservoirs, Geophys. Res. Lett., 35, L06404. https://doi.org/10.1029/2007GL033057
  30. Gunkel, G., 2009, Hydropower - A green energy? Tropical reservoirs and greenhouse gas emissions, Clean - Soil Air Water, 37, 726-734. https://doi.org/10.1002/clen.200900062
  31. Hertwich, E. G., 2013, Addressing biogenic greenhouse gas emissions from hydropower in LCA, Environ. Sci. Technol., 47, 9604-9611. https://doi.org/10.1021/es401820p
  32. Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., Martikainen, P. J., 2003, Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609-621. https://doi.org/10.1016/S0045-6535(03)00243-1
  33. Huttunen, J. T., Vaisanen, T. S., Hellsten, S. K., Heikkinen, M., Nykanen, H., Jungner, H., Niskanen, A., Virtanen, M. O., Lindqvist, O. V., Nenonen, O. S., Martikainen, P. J., 2002, Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochem. Cycles, 16, 3-1-3-17.
  34. Ho, D. T., Bliven, L. F., Wanninkhof, R., Schlosser, P., 1997, The effect of rain on air-water gas exchange, Tellus B, 49, 149-158. https://doi.org/10.3402/tellusb.v49i2.15957
  35. IEA, 2021, Hydropower Special Market Report - Analysis and forecast to 2030, IEA Publications, Paris, https://www.iea.org/reports/hydropower-special-market-report.
  36. Ion, I. V., Ene, A., 2021, Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review, Sustainability, 13, 11621. https://doi.org/10.3390/su132111621
  37. Jin, H., Yoon, T. K., Lee, S. H., Kang, H., Im, J., Park, J. H., 2016, Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event, Environ. Res. Lett., 11, 124003. https://doi.org/10.1088/1748-9326/11/12/124003
  38. Jin, H., Yoon, T. K., Begum, M. S., Lee, E. J., Oh, N. H., Kang, N., Park, J. H., 2018, Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeosciences, 15, 6349-6369. https://doi.org/10.5194/bg-15-6349-2018
  39. Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., Xu, J., 2010, Greenhouse gas emissions from nitrogen fertilizer use in China, Environ. Sci. Policy, 13, 688-694. https://doi.org/10.1016/j.envsci.2010.07.006
  40. Kamp, A., Stief, P., Knappe, J., De Beer, D., 2013, Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. PLoS One, 8, e0082605.
  41. Kangwon National University, 2018, The influence of monsoon climate on the emissions of greenhouse gases (CH4 and CO2) and phosphorus mobility in a reservoir system.
  42. Keller, M., Stallard, R. F., 1994, Methane emission by bubbling from Gatun Lake, Panama, J. Geophys. Res. Atmos., 99, 8307-8319. https://doi.org/10.1029/92JD02170
  43. KNCOLD, 2021, http://www.kncold.or.kr/.
  44. Kumar, A., Sharma, M. P., 2012, Greenhouse gas emissions from hydropower reservoirs, J. Water Energy Environ., 11, 37-42.
  45. Laanbroek, H. J., 2010, Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review, Ann. Bot., 105, 141-153. https://doi.org/10.1093/aob/mcp201
  46. Lee, H. M., Shin, R. Y., Lee, J. H., Park, J. G., 2019, A study on the relationship between cyanobacteria and environmental factors in Yeongcheon Lake, J. Korean Soc. Water Environ., 35, 352-361. https://doi.org/10.15681/KSWE.2019.35.4.352
  47. Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., Lu, X. X., 2018. Large greenhouse gases emissions from China's lakes and reservoirs, Water Res., 147, 13-24. https://doi.org/10.1016/j.watres.2018.09.053
  48. Lima, I. B. T., Victoria, R. L., Novo, E. M. L. M., Feigl, B. J., Ballester, M. V. R., Ometto, J. P., 2002, Methane, carbon dioxide and nitrous oxide emissions from two Amazonian Reservoirs during high water table, Verh. lnternat. Verein. Limnol., 28, 438-442.
  49. Liu, X., Zhang, F., 2011, Nitrogen fertilizer induced greenhouse gas emissions in China, Curr. Opin. Environ. Sustain., 3, 407-413. https://doi.org/10.1016/j.cosust.2011.08.006
  50. Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., Zarfl, C., 2020, River dam impacts on biogeochemical cycling, Nat. Rev. Earth Environ., 1, 103-116. https://doi.org/10.1038/s43017-019-0019-0
  51. Makinen, K., Khan, S., 2010, Policy considerations for greenhouse gas emissions from freshwater reservoirs, Water Altern., 3, 91-105.
  52. Mann, K. H., Williams, W. D., 2014, Inland water ecosystem Encyclopedia Britannica, https://www.britannica.com/science/inland-water-ecosystem.
  53. Mosher, J. J., Fortner, A. M., Phillips, J. R., Bevelhimer, M. S., Stewart, A. J., Troia, M. J., 2015, Spatial and temporal correlates of greenhouse gas diffusion from a hydropower reservoir in the southern United States, Water 7, 5910-5927. https://doi.org/10.3390/w7115910
  54. Musenze, R. S., Fan, L., Grinham, A., Werner, U., Gale, D., Udym J., Yuan, Z., 2016, Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities, Biogeochemistry, 128, 233-255. https://doi.org/10.1007/s10533-016-0206-8
  55. Noh, S. Y., Park, H. K., Choi, H. L., Lee, J. A., 2014, Effect of Climate Change for Cyanobacteria Growth Pattern in Chudong Station of Lake Daechung, J. Korean Soc. Water Environ., 30, 377-385. https://doi.org/10.15681/KSWE.2014.30.4.377
  56. OECD, 2020, Environment at a Glance 2020, OECD Publishing, Paris.
  57. Plouviez, M., Shilton, A., Packer, M. A., Guieysse, B., 2019, Nitrous oxide emissions from microalgae: potential pathways and significance, J. Appl. Phycol., 31, 1-8. https://doi.org/10.1007/s10811-018-1531-1
  58. Prairie, Y. T., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., Del Giorgio, P., DelSontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serca, D., Sobek, S., Vachon, D., 2017, Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?, Ecosyst., 21, 1058-1071. https://doi.org/10.1007/s10021-017-0198-9
  59. Rasanen, T. A., Varis, O., Scherer, L., Kummu, M., 2018, Greenhouse gas emissions of hydropower in the Mekong River Basin, Environ. Res. Lett., 13, 034030. https://doi.org/10.1088/1748-9326/aaa817
  60. Richardson, D., Felgate, H., Watmough, N., Thomson, A., Baggs, E., 2009, Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle - could enzymic regulation hold the key?, Trends Biotechnol., 27, 388-397. https://doi.org/10.1016/j.tibtech.2009.03.009
  61. Rosa, L. P., Dos Santos, M. A., Matvienko, B., Sikar, E., Dos Santos, E. O., 2006, Scientific errors in the fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming, Clim. Change, 75, 91-102. https://doi.org/10.1007/s10584-005-9046-6
  62. Rudd, J. W. M., Hamilton, R. D., 1978, Methane cycling in a cutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr., 23, 337-348. https://doi.org/10.4319/lo.1978.23.2.0337
  63. Shi, W., Chen, Q., Zhang, J., Liu, D., Yi, Q., Chen, Y., Ma, H., Hu, L., 2020, Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River, Water Res., 173, 115582. https://doi.org/10.1016/j.watres.2020.115582
  64. Shi, W., Du, M., Ye, C., Zhang, Q., 2021, Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China, Water Res., 201, 117308. https://doi.org/10.1016/j.watres.2021.117308
  65. Song, C., Zhang, J., Wang, Y., Wang, Y., Zhao, Z., 2008, Emission of CO2, CH4and N2O from freshwater marsh in northeast of China, J. Environ. Manage., 88, 428-436. https://doi.org/10.1016/j.jenvman.2007.03.030
  66. St. Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., Rosenberg, D. M., 2000, Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, BioScience, 50, 766-775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
  67. Tremblay, A., Varfalvy, L., Garneau, M., 2004, The issue of greenhouse gases from hydroelectric reservoir; From boreal to tropical regions, The United Nations Symposium on Hydropower and Sustainable Development, Beijing, China.
  68. Tremblay, A., Varfalvy, L., Roehm, C., Garneau, M., 2004, Greenhouse gas emission - Fluxs and processes, Springer, Germany.
  69. Tsai, D. D. W., Chen, P. H., Ramaraj, R., 2017, The potential of carbon dioxide capture and sequestration with algae, Ecol. Eng., 98, 17-23. https://doi.org/10.1016/j.ecoleng.2016.10.049
  70. UNESCO, IHA, 2010, GHG measurement guidelines for freshwater reservoirs, IHA, UK.
  71. WAMIS, 2021, http://wamis.go.kr/.
  72. Wang, F., Cao, M., Wang, B., Fu, J., Luo, W., Ma, J., 2015, Seasonal variation of CO2 diffusion flux from a large subtropical reservoir in East China, Atmos. Environ., 103, 129-137. https://doi.org/10.1016/j.atmosenv.2014.12.042
  73. Wang, F., Wang, B., Liu, C. Q., Wang, Y., Guan, J., Liu, X., Yu, Y., 2011, Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China, Atmos. Environ., 45, 3827-3834. https://doi.org/10.1016/j.atmosenv.2011.04.014
  74. Wanninkhof, R., Bliven, L. F., 1991, Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank, J. Geophys. Res. Oceans, 96, 2785-2796. https://doi.org/10.1029/90JC02368
  75. Wanninkhof, R., McGillis, W. R., 1999, A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26, 1889-1892. https://doi.org/10.1029/1999GL900363
  76. Weathers, P. J., Niedzielski, J. J., 1986, Nitrous oxide production by cyanobacteria, Arch. Microbiol., 146, 204-206. https://doi.org/10.1007/BF00402352
  77. West, W. E., Coloso, J. J., Jones, S. E., 2012, Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment, Freshw. Biol., 57, 949-955. https://doi.org/10.1111/j.1365-2427.2012.02755.x
  78. Whiting, G. J., Chanton, J. P., 1993, Primary production control of methane emission from wetlands, Nature, 364, 794-795. https://doi.org/10.1038/364794a0
  79. Xiao, Q., Hu, Z., Fu, C., Bian, H., Lee, X., Chen, S., Shang, D., 2019, Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China, Environ. Pollut., 251, 185-192. https://doi.org/10.1016/j.envpol.2019.04.076
  80. Xing, P., Guo, L., Tian, W., Wu, Q. L., 2011, Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms, ISME J., 5, 792-800. https://doi.org/10.1038/ismej.2010.176
  81. Yan, X., Xu, X., Ji, M., Zhang, Z., Wang, M., Wu, S., Wang, G., Zhang, C., Liu, H., 2019, Cyanobacteria blooms: A neglected facilitator of CH4 production in eutrophic lakes, Sci. Total Environ., 651, 466-474. https://doi.org/10.1016/j.scitotenv.2018.09.197
  82. Yang, H., Andersen, T., Dorsch, P., Tominaga, K., Thrane, J. E., Hessen, D. O., 2015, Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126, 211-225. https://doi.org/10.1007/s10533-015-0154-8
  83. Yang, D., Mao, X., Wei, X., Tao, Y., Zhang, Z., Ma, J., 2019, Water air interface greenhouse gas emissions (CO2, CH4, and N2O) emissions were amplified by continuous dams in an urban river in Qinghai - Tibet Plateau, China, Water, 12, 759. https://doi.org/10.3390/w12030759
  84. Yang, D., Mao, X., Wei, X., Tao, Y., Zhang, Z., Ma, J., Water-air interface greenhouse gas emissions (CO2, CH4, and N2O) emissions were amplified by continuous dams in Qinghai-Tibet Plateau, China, Water, 12, 759. https://doi.org/10.3390/w12030759
  85. Yeon, I., Hong, J., Hong, E., Lim, B., 2010, The characteristics and correlation analyses of chlorophyll-a data monitored continuously in Daecheong Reservoir, J. Korean Soc. Water Environ., 26, 994-999.