DOI QR코드

DOI QR Code

바텀애시 골재를 사용한 다공성 콘크리트의 강도와 컴펙션의 상관관계 연구

A Study on the Correlation between Strength and Compaction of Porous Concrete Using Bottom Ash Aggregate

  • In-Hwan, Yang (Department of Civil Engineering, Kunsan National University) ;
  • Seung-Tae, Jeong (Department of Civil Engineering, Kunsan National University) ;
  • Ji-Hun, Park (Department of Civil Engineering, Kunsan National University)
  • 투고 : 2022.09.26
  • 심사 : 2022.11.09
  • 발행 : 2022.12.30

초록

본 논문에서는 바텀애시 골재를 사용한 다공성 콘크리트의 강도와 컴펙션의 상관관계를 분석하였다. 본 연구에서는 바텀애시를 두 가지 입도의 골재를 8:2 비율로 섞은 복합골재와 단일 입도만을 갖는 단일골재를 사용하여 각 골재 크기별 특성을 파악 한 후, 콘크리트 골재로 사용하였다. 물-바인더 비는 0.30으로 고정하고, 컴펙션 수준을 0.5, 1.5 및 3.0 MPa 값으로 지정하여 다공성 콘크리트 시편을 제작하였다. 총 공극률, 압축강도, 쪼갬인장강도 및 휨인장강도를 실험을 진행하고 분석을 수행하였다. 컴펙션이 증가할 때 총 공극률은 감소하고, 압축강도, 쪼갬인장강도 및 휨인장강도는 증가하였다. 복합골재를 사용한 콘크리트의 총 공극률은 단일골재를 사용한 콘크리트에 비해 총 공극률은 낮고, 강도는 크게 나타났다. 회귀분석을 통해 다공성 콘크리트의 총 공극률, 압축강도, 쪼갬인장강도 및 휨인장강도 상관관계를 제시하였다. 총 공극률과 강도 특성은 서로 반비례하는 상관관계를 나타냈다.

In this paper, the effect of compression levels on the strengths of porous concrete using bottom ash aggregates was analyzed. Coal bottom ash (CBA) was used as aggregate in porous concrete in this study. The aggregate size types used in the CBA concrete mixtures were catagorized into two different ones. One included only a single aggregate particle size and the other included hybrid aggregate particles mixed at a ratio of 8:2 volume proportion. The water-binder ratio was fixed at 0.30, and the compression levels were applied at 0.5, 1.5, and 3.0 MPa valu es to fabricate a porou s concrete specimen. The total porosity, compressive, splitting tensile, and flexural tensile strengths were tested and analyzed. When the compression level increased, the total porosity decreased, meanwhile the compressive, split tensile, and flexural tensile strengths increased. The total porosity of concrete using hybrid aggregate was lower and the strength was larger than those of concrete using single-type aggregate. Finally, the correlation between the total porosity, compressive, split tensile, and flexural tensile strengths of porous concrete were presented. The total porosity and strength characteristics showed an inversely proportional correlation.

키워드

과제정보

본 연구는 국토교통기술촉진연구사업의 지원을 받아 연구되었습니다(21CTAP-C164197-01).

참고문헌

  1. Al Biajawi, M.I., Embong, R., Muthusamy, K., Ismail, N., Obianyo, I.I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious composites: a review, Construction and Building Materials, 338, 127624.
  2. Arenas, C., Leiva, C., Vilches, L.F., Cifuentes, H. (2013). Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers, Waste Management, 33(11), 2316-2321. https://doi.org/10.1016/j.wasman.2013.07.008
  3. Arun, A., Chekravarty, D. (2022). Strength improvement techniques on pervious concrete, Materials Today : Proceedings, 52, 1979-1985. https://doi.org/10.1016/j.matpr.2021.11.624
  4. da Costa, F.B.P., Haselbach, L.M., da Silva Filho, L.C.P. (2021). Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture, Construction and Building Materials, 268, 121084.
  5. Embong, R., Kusbiantoro, A., Muthusamy, K., Ismail, N. (2021). Recycling of coal bottom ash(CBA) as cement and aggregate replacement material: a review, IOP Conference Series: Earth and Environmental Science, 682(1), 12035.
  6. Jang, J.G., Ahn, Y.B., Souri, H., Lee, H.K. (2015). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: heavy metal leaching characteristics and compressive strength, Construction and Building Materials, 79, 173-181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
  7. Jeong, S.T., Bui, Q.T., Yang, I.H. (2022). A comparative study of the thermal conductivities of CBA porous concretes, Materials, 15, 5204.
  8. Kim, H.K., Lee, H.K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete, Construction and Building Materials, 25(2), 1115-1122. https://doi.org/10.1016/j.conbuildmat.2010.06.065
  9. Kou, S.C., Poon, C.S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates, Construction and Building Materials, 23(8), 2877-2886.
  10. Kuo, W.T., Liu. C.C., Su, D.S. (2013). Use of washed municipal solid waste incinerator bottom ash in concrete, Cement and Concrete Composites, 37, 328-335.
  11. Manz, O.E. (1997). Worldwide production of coal ash and utilization in concrete and other products, Fuel(Guildford), 76(8), 691-696. https://doi.org/10.1016/S0016-2361(96)00215-3
  12. Ngohpok, C., Sata, V., Satiennam, T., Klungboonkrong, P., Chindaprasirt, P. (2018). Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates, KSCE Journal of Civil Engineering, 22(4), 1369-1376 [in Korean]. https://doi.org/10.1007/s12205-017-0144-6
  13. Park, S.B., Jang, Y.I., Lee, J., Lee, B.J. (2009). An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea, Journal of Hazardous Materials, 166(1), 348-355. https://doi.org/10.1016/j.jhazmat.2008.11.054
  14. Park, S.B., Tia, M. (2004). An experimental study on the water-purification properties of porous concrete, Cement and Concrete Research, 34(2), 177-184. https://doi.org/10.1016/S0008-8846(03)00223-0
  15. Rodrigues, P.C., de Sales Braga, N.T., Junior, E.S.A., Cordeiro, L.D.N.P., de Melo, G.D.S.V. (2022). Effect of pore characteristics on the sound absorption of pervious concretes, Case Studies in Construction Materials, 17, e01302.
  16. Singh, M. (2018). 1-coal bottom ash, Waste and Supplementary Cementitious Materials in Concrete, 2018, 3-50.
  17. Singh, N., Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement, Construction and Building Materials, 233, 117276.
  18. Yang, I.H., Jeong, S.T., Park, J.H. (2022). Effects of the compaction and size of bottom ash aggregate on thermal conductivity of porous concrete, Journal of the Korean Recycled Construction Resources Institute, 10(3), 195-203 [in Korean].
  19. Yang, I.H., Park, J.H. (2020). A study on the thermal properties of high-strength concrete containing CBA fine aggregates, Materials, 13, 1493.
  20. Yang, I.H., Park, J.H., Jung, H.W. (2020). An experimental study on the thermal conductivity of concrete containing coal bottom ash aggregate, XV International Conference on Durability of Building Materials and Components(DBMC 2020), 1-6.
  21. Yang, I.H., Park, J.H., Kim, K.C., Yoo, S.W. (2021). A comparative study on the thermal conductivity of concrete with coal bottom ash under different drying conditions, Advances in Civil Engineering, 2021, 1-12.
  22. Yang, K.H. (2019). Evaluation of mechanical properties of lightweight concrete using bottom ash aggregates, Journal of the Korea Concrete Institute, 31(4), 331-337 [in Korean]. https://doi.org/10.4334/JKCI.2019.31.4.331
  23. Zhong, R., Wille, K. (2016). Compression response of normal and high strength pervious concrete, Construction and Building Materials, 109, 177-187.