DOI QR코드

DOI QR Code

Protective Effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-Induced Cognitive Decline, Oxidative Stress and Neuroinflammation

  • Song, Xinping (College of Agriculture, Yanbian University) ;
  • Zhao, Zijian (Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences) ;
  • Zhao, Yujuan (Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences) ;
  • Jin, Qing (College of Agriculture, Yanbian University) ;
  • Li, Shengyu (Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences)
  • Received : 2021.11.17
  • Accepted : 2021.12.20
  • Published : 2022.02.28

Abstract

Recently, the efficacy of probiotics in treatment of neurodegenerative disorders has been reported in animal and clinical studies. Here, we assessed the effects of Bacillus coagulans JA845 in counteracting the symptoms of D-galactose (D-gal)/AlCl3-induced Alzheimer's disease (AD) in a mice model through behavioral test, histological assessment and biochemical analysis. Ten weeks of pre-treatment with B. coagulans JA845 prevented cognitive decline, attenuated hippocampal lesion and protected neuronal integrity, which demonstrated the neuroprotective features of B. coagulans JA845 in vivo. We also found that supplementation of B. coagulans JA845 alleviated amyloid-beta deposits and hyperphosphorylated tau in hippocampus of D-gal/AlCl3-induced AD model mice. Furthermore, B. coagulans JA845 administration attenuated oxidative stress and decreased serum concentration of inflammatory cytokines by regulating the Nrf2/HO-1 and MyD88/TRAF6/NF-κB pathway. Our results demonstrated for the first time that B. coagulans has the potential to help prevent cognitive decline and might be a novel therapeutic approach for the treatment of neurodegenerative diseases.

Keywords

Acknowledgement

This work was financially supported by the System of MOF and MARA, Agricultural Science and Technology Innovation Program of Jilin Province (C02100308), the Basic Scientific Research Projects of Jilin Academy of Agricultural Sciences (KYJF2021ZR016) and the 2018 Funding Plan for Introducing High-level Scientific and Technological Innovation Talents to Jilin scientific research institutes (2060399) in China.

References

  1. Takashima A. 2009. Amyloid-beta, tau, and dementia. J. Alzheimers Dis. 17: 729-736. https://doi.org/10.3233/JAD-2009-1090
  2. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. 2000. Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta 1502: 139-144. https://doi.org/10.1016/S0925-4439(00)00040-5
  3. Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol.14: 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5
  4. Jiang C, Li G, Huang P, Liu Z, Zhao B. 2017. The gut microbiota and Alzheimer's disease. J. Alzheimers Dis. 58: 2018.
  5. George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G. 2018. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 26: 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
  6. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, et al. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 7: 13510. https://doi.org/10.1038/s41598-017-13368-2
  7. Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, et al. 2018. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55: 7987-8000. https://doi.org/10.1007/s12035-018-0973-4
  8. Cao J, Yu Z, Liu W, Zhao J, Zhang H, Zhai Q, et al. 2020. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J. Funct. Foods 64: 103643. https://doi.org/10.1016/j.jff.2019.103643
  9. Madempudi R, Ahire J, Neelamraju J, Tripathi A, Nanal S. 2019. Randomized clinical trial: the effect of probiotic Bacillus coagulans unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults. Sci. Rep. 9: 12210. https://doi.org/10.1038/s41598-019-48554-x
  10. La Rosa M, Bottaro G, Gulino N, Gambuzza F, Di Forti F, Ini G, et al. 2003. Prevention of antibiotic-associated diarrhea with Lactobacillus sporogens and fructo-oligosaccharides in children. a multicentric double-blind vs placebo study. Minerva Pediatr. 55: 447-452.
  11. Fitzpatrick L, Small J, Greene W, Karpa K, Farmer S, Keller D. 2012. Bacillus coagulans GBI-30, 6086 limits the recurrence of clostridium difficile-induced colitis following vancomycin withdrawal in mice. Gut Pathog. 4: 13. https://doi.org/10.1186/1757-4749-4-13
  12. Minamida K, Nishimura M, Miwa K, Nishihira J. 2015. Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation. Biosci. Biotechnol. Biochem. 79: 300-306. https://doi.org/10.1080/09168451.2014.972331
  13. Majeed M, Nagabhushanam K, Arumugam S, Majeed S, Ali F. 2018. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 62:2018.
  14. Venkataraman R, Madempudi R, Neelamraju J, Ahire J, Vinay H, Lal A, et al. 2021. Effect of multi-strain probiotic formulation on students facing examination stress: a double-blind, placebo-controlled study. Probiotics Antimicrob. Proteins 13: 12-18. https://doi.org/10.1007/s12602-020-09681-4
  15. Wang Q, Shen Y, Wang X, Fu S, Zhang X, Zhang Y, et al. 2020. Lactobacillus plantarum concomitant memantine and treatment attenuates cognitive impairments in APP/PS1 mice. Aging 12: 628-649. https://doi.org/10.18632/aging.102645
  16. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji O, et al. 2016. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8: 256.
  17. Grady C, Furey M, Pietrini P, Horwitz B, Rapoport S. 2001. Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain 124: 739-756. https://doi.org/10.1093/brain/124.4.739
  18. Abulfadl Y, El-Maraghy N, Ahmed A, Nofal S, Badary O. 2018. Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes. Neurol. Res. 40: 324-333. https://doi.org/10.1080/01616412.2018.1441776
  19. Serrano-Pozo A, Frosch M, Masliah E, Hyman B. 2011. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1: a006189. https://doi.org/10.1101/cshperspect.a006189
  20. Varadarajan S, Yatin S, Aksenova M, Butterfield D. 2000. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130: 184-208. https://doi.org/10.1006/jsbi.2000.4274
  21. Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui R, Tabassum S, et al. 2020. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS One 15: e0227631. https://doi.org/10.1371/journal.pone.0227631
  22. Jensen GS, Cash HA, Farmer S, Keller D. 2017. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro. J. Inflamm. Res. 10: 107-117. https://doi.org/10.2147/JIR.S141660
  23. Nyangale E, Farmer S, Cash H, Keller D, Chernoff D, Gibson G. 2015. Bacillus coagulans GBI-30, 6086 modulates faecalibacterium prausnitzii in older men and women. J. Nutr. 145: 1446-1452. https://doi.org/10.3945/jn.114.199802
  24. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. 2007. Role of the Toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell Physiol. Biochem. 20: 947-956. https://doi.org/10.1159/000110455
  25. Lim J, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, et al. 2011. MyD88 deficiency ameliorates β-amyloidosis in an animal model of Alzheimer's disease. Am. J. Pathol. 179: 1095-1103. https://doi.org/10.1016/j.ajpath.2011.05.045
  26. Lim J-E, Song M, Jin J, Kou J, Pattanayak A, Lalonde R, et al. 2012. The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice. Behav. Brain Res. 227: 36-42. https://doi.org/10.1016/j.bbr.2011.10.027
  27. Drouin-Ouellet J, LeBel M, Filali M, Cicchetti F. 2012. MyD88 deficiency results in both cognitive and motor impairments in mice. Brain Behav. Immun. 26: 880-885. https://doi.org/10.1016/j.bbi.2012.02.007
  28. Kanninen K, Malm TM, Jyrkkanen H-K, Goldsteins G, Keksa-Goldsteine V, Tanila H, et al. 2008. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci. 39: 302-313. https://doi.org/10.1016/j.mcn.2008.07.010
  29. Ramsey C, Glass C, Montgomery M, Lindl K, Ritson G, Chia L, et al. 2007. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neuroldlq. 66: 75-85. https://doi.org/10.1097/nen.0b013e31802d6da9
  30. Rojo A, Pajares M, Rada P, Nunez A, Nevado-Holgado A, Killik R, et al. 2017. Nrf2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and tau pathology. Redox biol. 13: 444-451. https://doi.org/10.1016/j.redox.2017.07.006
  31. Jazwa A, Cuadrado A. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets 11: 1517-1531. https://doi.org/10.2174/1389450111009011517