DOI QR코드

DOI QR Code

Analysis of LH2 Tank Behavior through Computational Simulation of C-Type LH2 Carrier on Voyage and Unloading Process

C-Type LH2 운송선박 운항 및 하역공정 전산모사를 통한 LH2 탱크 거동 분석

  • DONGHYUK, KIM (KOGAS Research Institute, Korea Gas Corporation) ;
  • YEONGBEOM, LEE (KOGAS Research Institute, Korea Gas Corporation) ;
  • HEUNGSEOK, SEO (KOGAS Research Institute, Korea Gas Corporation) ;
  • YONGGI, MO (KOGAS Research Institute, Korea Gas Corporation) ;
  • CHIHUN, LEE (KOGAS Research Institute, Korea Gas Corporation)
  • 김동혁 (한국가스공사 가스연구원) ;
  • 이영범 (한국가스공사 가스연구원) ;
  • 서흥석 (한국가스공사 가스연구원) ;
  • 모용기 (한국가스공사 가스연구원) ;
  • 이치훈 (한국가스공사 가스연구원)
  • Received : 2022.11.03
  • Accepted : 2022.12.14
  • Published : 2022.12.30

Abstract

If the hydrogen industry is activated, the introduction of C-type and pressurized liquefied hydrogen (LH2) tank suitable for small and medium-sized transp- ortation and storage will be given priority in the future. Therefore in this paper, the behavior for the LH2 property changes and boil-off gas (BOG) treatment of the C-type cargo tank through voyage of the LH2 carrier and pressurized tank of the LH2 receiving terminal were analyzed through computational simulations by making assumptions about the carrier operation and unloading conditions.

Keywords

Acknowledgement

본 연구는 산업통산자원부(MOTIE)와 한국에너지기술평가원(KTTEP)의 지원을 받아 수행한 연구과제이다(No.20213030040460).

References

  1. K. Heo, W. Kang, and B. Park, "Consideration for IMO type c independent tank rule scantling process and evaluation methods", Special Issue of the Society of Naval Architects of Korea, 2017, pp. 93-104. Retrieved from http://www.koreascience.or.kr/article/CFKO201729562508726.pdf.
  2. International Maritime Organization (IMO), "IGC Code", IMO, 2014, pp. 63-66. Retrieved from https://www.imo.org/en/OurWork/Safety/Pages/IGC-Code.aspx.
  3. Y. Takaoka, A. Saeed, K. Nishifuji, and K. Kanbe, "Design and Operation of the First LH2 Carrier. In: Gastech 2017", Gastech Tokyo, 2017 Apr 4-7; Tokyo, Japan. Gastech, c2017, p. 1-10.
  4. International Gas Union (IGU), "World LNG Report 2022", IGU, 2022, pp. 111. Retrieved from https://www.igu.org/resources/world-lng-report-2022/.
  5. W. Notardonato, "NASA experience with large scale liquid hydrogen. In: Hydrogen Liquefaction and Storage Symposium", 2019 Sep 26-27; Perth, Australia. University of Western Australia, c2019, pp. 7-21. Retrieved from https://lngfutures.edu.au/wp-content/uploads/2019/10/Notardonato-W.-NASAs-Experience-with-large-Scale-LH2-Operations.pdf.
  6. HySTRA, "Hydrogen supply chain," HySTRA, 2020-2021. Retrieved from https://www.hystra.or.jp/en/project/.
  7. D. Kim, Y. Lee, H. Seo, Y. Kwon, C. Park, and H. Kwon, "Process simulation of LH2 receiving terminal with mem brane storage tank and prediction of BOG generation ac cording to change of design conditions", Journal of the Korean Institute of Gas, Vol. 26, No. 5, 2022, pp. 49-57, doi: https://doi.org/10.7842/kigas.2022.26.5.49.
  8. Aspen Tech, "Aspen Plus®", Aspen Technology Inc, 2019. Retrieved from https://www.aspentech.com/en/products/engineering/aspenplus.
  9. J. W. Leachman, R. T. Jacobsen, E. W. Lemmon, and S. G. Penoncello, "Thermodynamic properties of cryogenic flu ids(2nd ed.)", Springer, Switzerland, 2017, pp. 8-9.
  10. J. M. Smith, H. C. Van Ness, and M. Abbott, "Introduction to Chemical Engineering Thermodynamics(7th ed.)", McGraw-Hill, USA, 2005, pp. 367-377.
  11. W. U. Notardonato, A. M. Swanger, J. E. Fesmire, K. M. Jumper, W. L. Johnson, and T. M. Tomsik, "Final test results for the ground operations demonstration unit for liquid hydrogen", Cryogenics, Vol. 88, 2017, pp. 147-155, doi: https://doi.org/10.1016/j.cryogenics.2017.10.008.