DOI QR코드

DOI QR Code

토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향

Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline

  • 최병학 (강릉원주대학교 신소재금속공학과) ;
  • 한성희 (강릉원주대학교 신소재금속공학과) ;
  • 김대현 (강릉원주대학교 신소재금속공학과) ;
  • 김우식 (한국가스공사 가스연구원) ;
  • 김철만 (한국가스공사 가스연구원) ;
  • 최광수 (국립과학수사연구원 법공학부 안전과)
  • Choe, Byung Hak (Dept. of Metal and Materials Engineering, Gangneung-Wonju National Univ.) ;
  • Han, Sung Hee (Dept. of Metal and Materials Engineering, Gangneung-Wonju National Univ.) ;
  • Kim, Dae Hyun (Dept. of Metal and Materials Engineering, Gangneung-Wonju National Univ.) ;
  • Kim, Woosik (KOGAS Research Institute (R&D Division Korea Gas Corporation)) ;
  • Kim, Cheolman (KOGAS Research Institute (R&D Division Korea Gas Corporation)) ;
  • Choi, Kwang Su (Forensic Safety Division, National Forensic Service)
  • 투고 : 2022.01.03
  • 심사 : 2022.03.18
  • 발행 : 2022.03.27

초록

Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

키워드

과제정보

This study was supported by Gangneung-Wonju National University.

참고문헌

  1. K. M. Usher, A. H. Kaksonen, I. Cole and D. Marney, Int. Biodeterioration Biodegrad., 93, 84 (2014). https://doi.org/10.1016/j.ibiod.2014.05.007
  2. L. Yu, J. Duan, X. Du, Y. Huang and B. Hou, Electrochem. Commun., 26, 101 (2013). https://doi.org/10.1016/j.elecom.2012.10.022
  3. S. Yuan, B. Liang, Y. Zhao and S. O. Pehkonen, Corros. Sci., 74, 353 (2013). https://doi.org/10.1016/j.corsci.2013.04.058
  4. R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Corros. Sci., 127, 1 (2017). https://doi.org/10.1016/j.corsci.2017.08.007
  5. Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, J. Mater. Sci. Technol., 34, 1713 (2018). https://doi.org/10.1016/j.jmst.2018.02.023
  6. R. Melchers, Corros. Sci., 49, 3149 (2007). https://doi.org/10.1016/j.corsci.2007.03.021
  7. R. Jeffrey and R. E. Melchers, Corros. Sci., 49, 2270 (2007). https://doi.org/10.1016/j.corsci.2006.11.003
  8. X. Shi, W. Yan, D. Xu, M. Yan, C. Yang, Y. Shan and K. Yang, J. Mater. Sci. Technol., 34, 2480 (2018). https://doi.org/10.1016/j.jmst.2018.05.020
  9. D. Enning and J. Garrelfs, Appl. Environ. Microbiol., 80, 1226 (2014). https://doi.org/10.1128/AEM.02848-13
  10. H. Liu and Y. F. Cheng, Electrochim. Acta, 253, 368 (2017). https://doi.org/10.1016/j.electacta.2017.09.089
  11. S. K. Ryu, Y. H. Kim and Y. D. Lee, Corros. Sci. of Korea, 25, 349 (1996).
  12. F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra and A. E. Kakpovbia, J. Mater. Eng. Perform., 22, 3517 (2013). https://doi.org/10.1007/s11665-013-0627-7
  13. J. Ress, G. Monrrabal, A. Diaz, J. Perez-Perez, J. Bastidas and D. M. Bastidas, Eng. Fail. Anal., 116, 104734 (2020). https://doi.org/10.1016/j.engfailanal.2020.104734
  14. W. Liu, Eng. Fail. Anal., 42, 109 (2014). https://doi.org/10.1016/j.engfailanal.2014.04.001
  15. B. Liu, M. Sun, F. Lu, C. Du and X. Li, Colloids Surf., B, 197, 111356 (2020).
  16. D. Xu, Y. Li, F. Song and T. Gu, Corros. Sci., 77, 385 (2013). https://doi.org/10.1016/j.corsci.2013.07.044
  17. Y. Zhao, E. Zhou, D. Xu, Y. Yang, Y. Zhao, T. Zhang, T. Gu, K. Yang and F. Wang, Corros. Sci., 143, 281 (2018). https://doi.org/10.1016/j.corsci.2018.08.018
  18. D. Arun, R. Vimala and K. D. Ramkumar, Bioelectrochemistry, 135, 107546 (2020). https://doi.org/10.1016/j.bioelechem.2020.107546