Acknowledgement
본 연구는 한국연구재단 이공분야기초연구사업(No 2020R1I1A1A01052771)의 지원으로 수행되었으며 이에 감사드립니다.
References
- Kim, G. W. and Rhee, G. H., 2017, "Numerical Visualization Study of Offset Flow Control in a Wavy Fin Heat Exchanger" Proc. KSV Spring Conference, pp.25~26.
- Jeong, T. S., Park, S. H., Kim, C. S. and Kim, H. B., 2012, "Flow Visualization Study around the Distributor of Plate-fin Heat Exchangers" Journal of KSV, Vol. 10(3), pp.37~41.
- Addepalli, S., Eiroa, D., Lieotrakool, S., Francois, A. L., Guisset, J., Sanjaime, D.,Kazarian, M., Duda, J., Roy, R. and Phillips, P., 2015, "Degradation study of heat exchangers" Procedia Cirp, Vol 38, pp.137~142. https://doi.org/10.1016/j.procir.2015.07.057
- Allahkaram, S. R., P. Zakersafaee, and S. A. M. Haghgoo., 2011, "Failure analysis of heat exchanger tubes of four gas coolers" Engineering Failure Analysis, Vol 18(3), pp.1108~1114. https://doi.org/10.1016/j.engfailanal.2010.11.015
- Baek, W. S. and Lee, H. W., 2018, "Algorithm for Detecting PSD Boundary Invasion in Subway PSD using Image Processing" Journal of the KIECS, Vol. 13(5), pp.1051~1058.
- Kim, J. M., Kim, T. J. and Yu, D. I., 2020, "Research for development of our own image processing code for neutron tomography" Journal of KSV, Vol. 18(1), pp.44~49.
- Cho, M. O., Yoon, S. H., Han, W.T. and Kim, J. K., 2015, "Improvement of Image Processing Algorithm of High-Throughput Microscopy for Automated Counting of Asbestos Fibers" Journal of KSV, Vol. 13(3), pp.15~19.
- Cho, G. R., Doh, D. H., Kim, H. Y., Jin, G. J. and Kim, D.H, 2019, "Development Tobust Video Stabilization algorithm based Optical Flow" Journal of KSV, Vol. 17(3), pp.66~69.
- S. W, Kim and J, M, Song., 2021, "Statistical hypothesis testing using deep learning: Focusing on two sample t-test", Journal of the Korean Data And Information Science Society, Vol 32(1). pp. 25~35. https://doi.org/10.7465/jkdi.2021.32.1.25
- D. N, Lee and C, W, Lim., 2019, "Statistical methods for testing tumor heterogeneity", The Korean Journal of Applied Statistics, Vol 32(3). pp. 331~348. https://doi.org/10.5351/KJAS.2019.32.3.331