DOI QR코드

DOI QR Code

Role of Catechol in the Stability of Biocoating Materials in Wet Environment

바이오 코팅 재료의 습윤 안정성에 대한 카테콜 작용기의 역할

  • Lee, Damjung (Department of Chemistry, Kyungpook National University) ;
  • Lee, Kyueui (Department of Chemistry, Kyungpook National University)
  • Received : 2022.02.23
  • Accepted : 2022.03.08
  • Published : 2022.04.10

Abstract

Biocompatible polysaccharide coating technology can be a promising solution to overcome unexpected diseases caused by inflammatory reactions of metallic biomaterials (e.g., stent restenosis, etc.). However, due to their inherent hydrophilicity, it is difficult to maintain the coating layer for a long time in the physiological wet-environment. Herein, catechol functionalized hyaluronic acid was synthesized and introduced to the polymeric stent (polylactic acid) as the adhesive biocoating material. Surprisingly, even with the low degree of substitution of catechol (1.26%), a significant improvement in the underwater stability was observed, confirmed by capillary experiments and spectroscopic analysis. Our results may provide an insight into the positive role of catechol molecular adhesive group in the in-vivo stability of biocoating materials.

생체친화성 다당류 코팅은 금속류의 생체재료 자체 염증 반응으로 의한 합병증(예: 스텐트 재협착 등) 문제를 해결하는 데 활용될 수 있지만, 자체적인 친수성으로 인해 체내의 습윤 환경에서 코팅층이 오랫동안 유지되기 어렵다. 본 논문에서는 히알루론산 상에 접착성 카테콜 작용기를 도입하여 습윤 환경에서도 강한 부착력을 유지하는 다당류 기반의 바이오코팅 소재를 합성하고, 폴리젖산으로 구성된 스텐트 상에서의 수중 안정성 테스트를 통해 그 기능성을 확인하고자 하였다. 연구 결과, 1.26%의 낮은 카테콜 작용기 도입만으로도 수중 안정성이 크게 증대되었음을 모세관 실험 및 분광학적 분석 방법을 통해 확인할 수 있었다. 본 연구 결과는 바이오 코팅 재료의 생채 내 안정성 증대를 위해 카테콜 작용기 도입이 유용할 수 있다는 점을 시사한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. NRF-2021R1F1A1063320).

References

  1. G. A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S. F. Abera, G. Abyu, M. Ahmed, B. Aksut, T. Alam, and K. Alam, Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, J. Am. Coll. Cardiol., 70, 1-25 (2017). https://doi.org/10.1016/j.jacc.2017.04.052
  2. A. J. Lusis, Atherosclerosis, Nature, 407, 233-241 (2000). https://doi.org/10.1038/35025203
  3. E.-J. Jang, S.-Y. Lee, I.-H. Bae, D. S. Park, M. H. Jeong, and J.-K. Park, Fabrication and evaluation of polyelectrolyte complexes of dextran derivatives for drug coating of coronary stents, Appl. Chem. Eng., 30, 586-590 (2019). https://doi.org/10.14478/ACE.2019.1057
  4. R. Ross, J. Glomset, and L. Harker, Response to injury and atherogenesis, Am. J. Pathol, 86, 675-84 (1977).
  5. R. Kornowski, M. K. Hong, F. O. Tio, O. Bramwell, H. Wu, and M. B. Leon, In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia, J. Am. Coll. Cardiol., 31, 224-230 (1998).
  6. G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O'Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, and J. Greenberg, A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease, N. Engl. J. Med., 350, 221-231 (2004). https://doi.org/10.1056/nejmoa032441
  7. J. W. Moses, M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O'Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, and P. S. Teirstein, Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery, N. Engl. J. Med., 349, 1315-1323 (2003). https://doi.org/10.1056/NEJMoa035071
  8. E. Lih, C. H. Kum, W. Park, S. Y. Chun, Y. Cho, Y. K. Joung, K.-S. Park, Y. J. Hong, D. J. Ahn, and B.-S. Kim, Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly (lactide-co-glycolide) implants, ACS Nano, 12, 6917-6925 (2018). https://doi.org/10.1021/acsnano.8b02365
  9. G. Acharya, and K. Park, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug Deliv. Rev., 58, 387-401 (2006). https://doi.org/10.1016/j.addr.2006.01.016
  10. B. Oh, and C. H. Lee, Advanced cardiovascular stent coated with nanofiber, Mol. Pharm., 10, 4432-4442 (2013). https://doi.org/10.1021/mp400231p
  11. D. Kersani, J. Mougin, M. Lopez, S. Degoutin, N. Tabary, F. Cazaux, L. Janus, M. Maton, F. Chai, and J. Sobocinski, Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention, Eur. J. Pharm. Biopharm., 150, 156-167 (2020). https://doi.org/10.1016/j.ejpb.2019.12.017
  12. B. Wang, J. Hua, R. You, K. Yan, and L. Ma, Electrochemically deposition of catechol-chitosan hydrogel coating on coronary stent with robust copper ions immobilization capability and improved interfacial biological activity, Int. J. Biol. Macromol., 181, 435-443 (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.158
  13. H. Lee, N. F. Scherer, and P. B. Messersmith, Single-molecule mechanics of mussel adhesion, Proc. Natl. Acad. Sci. U.S.A., 103, 12999-13003 (2006). https://doi.org/10.1073/pnas.0605552103
  14. L. Li, and H. Zeng, Marine mussel adhesion and bio-inspired wet adhesives, Biotribology, 5, 44-51 (2016). https://doi.org/10.1016/j.biotri.2015.09.004
  15. S. Park, S. Kim, Y. Jho, and D. S. Hwang, Cation-π interactions and their contribution to mussel underwater adhesion studied using a surface forces apparatus: a mini-review, Langmuir, 35, 16002-16012 (2019). https://doi.org/10.1021/acs.langmuir.9b01976
  16. J. Wu, L. Zhang, Y. Wang, Y. Long, H. Gao, X. Zhang, N. Zhao, Y. Cai, and J. Xu, Mussel-inspired chemistry for robust and surface-modifiable multilayer films, Langmuir, 27, 13684-13691 (2011). https://doi.org/10.1021/la2027237
  17. H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426-430 (2007). https://doi.org/10.1126/science.1147241
  18. J. Necas, L. Bartosikova, P. Brauner, and J. Kolar, Hyaluronic acid (hyaluronan): A review, Veterinarni Medicina, 53, 397-411 (2008). https://doi.org/10.17221/1930-VETMED
  19. K. Meyer, The biological significance of hyaluronic acid and hyaluronidase, Physiol. Rev., 27, 335-359 (1947). https://doi.org/10.1152/physrev.1947.27.3.335
  20. B. Sadowitz, K. Seymour, V. Gahtan, and K. G. Maier, The role of hyaluronic acid in atherosclerosis and intimal hyperplasia, J. Surg. Res., 173, e63-e72 (2012).
  21. J. Shin, J. S. Lee, C. Lee, H. J. Park, K. Yang, Y. ,Jin, J. H. Ryu, K. S. Hong, S. H. Moon, and H. M. Chung, Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy, Adv. Funct. Mater., 25, 3814-3824 (2015). https://doi.org/10.1002/adfm.201500006
  22. S. Hong, K. Yang, B. Kang, C. Lee, I. T. Song, E. Byun, K. I. Park, S. W. Cho, and H. Lee, Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering, Adv. Funct. Mater., 23, 1774-1780 (2013). https://doi.org/10.1002/adfm.201202365
  23. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure, Vib. Spectrosc., 62, 110-114 (2012). https://doi.org/10.1016/j.vibspec.2012.05.007