DOI QR코드

DOI QR Code

해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves

  • 김현성 (과학기술연합대학원대학교 선박해양공학전공) ;
  • 김병완 (선박해양플랜트연구소 해양플랜트연구본부) ;
  • 이강수 (선박해양플랜트연구소 해양플랜트연구본부)
  • Kim, Hyun-Sung (Ship and Ocean Engineering, University of Science and Technology) ;
  • Kim, Byoung Wan (Offshore Platform Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Lee, Kangsu (Offshore Platform Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • 투고 : 2022.01.05
  • 심사 : 2022.03.03
  • 발행 : 2022.04.30

초록

기존 화석 연료의 고갈 및 환경오염의 문제와 대용량 발전을 위하여 해양환경 및 자원을 이용한 친환경에너지 발전에 대한 연구 및 개발이 증가하고 있으며, 이 중 높은 발전 효율을 가진 해상태양광 발전에 대한 연구가 크게 증가하고 있다. 환경하중이 비교적 약한 내수조건과 달리, 환경하중이 강한 해양에서의 태양광 발전을 위해서는 더 강한 강성의 구조재를 사용해야 한다. 하지만, 구조재의 생산 가능성, 무게를 포함한 구조물 특성 및 경제적 효율성 등의 제약조건이 발생할 수 있다. 따라서, 본 연구에서는 부유식 방파제를 설치함으로써 태양광구조물에 작용하는 파랑하중을 감소시켜 구조재의 강성 강화를 최소화하고자 하였다. 부유식 방파제의 크기 및 구조물로부터의 거리를 변화하여 이에 따른 파랑하중 및 구조재 응력의 감소 정도를 확인하였다. 다수 부력체의 상호간섭을 고려한 파랑하중의 경우, 고차경계요소법(Higher-Order Boundary Element Emthod)을 이용해 산정하였으며, 구조재에 작용하는 응력은 유한요소법(Finite Element Method)을 통해 평가하였다. 각 조건에서의 최대응력을 분석 및 비교함으로써 해상태양광 발전 시스템에 대한 부유식 방파제의 영향을 확인하였으며, 부유식 방파제의 크기가 파랑하중 및 구조재 응력 감소에 큰 영향을 미침을 확인하였다.

There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.

키워드

과제정보

본 연구는 선박해양플랜트연구소의 주요사업 "불확실성을 고려한 유탄성 기반 해양구조물 구조손상도 평가 핵심기술 개발(Grant No. PES4320)"의 지원을 받아 수행되었습니다.

참고문헌

  1. Bathe, K.J. (1996) Finite Element Procedures, Prentice Hall.
  2. Choi, Y.R., Hong, S.Y., Choi, H.S. (2000) An Analysis of Second-order Wave Forces on Floating Bodies by Using a Higher-Order Boundary Element Method, Ocean Eng., 28(1), pp.117~138. https://doi.org/10.1016/S0029-8018(99)00064-5
  3. Chung, J., Hulbert, G.M. (1993) A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α Method, J. Appl. Mech., 60(2), pp.371~375. https://doi.org/10.1115/1.2900803
  4. Federiksen, H.D. (1971) Wave Attenuation by Fluid Filled Bags, J. Waterw., Harb. & Coast. Eng. Div., 97(1), pp.73~90. https://doi.org/10.1061/AWHCAR.0000076
  5. Hales, L.Z. (1981) Floating Breakwaters: State-of-the-Art, Literature Review, US Army-CERC Technical Report, 81-1.
  6. He, F., Huang, Z., Law, A.W.K. (2012) Hydrodynamic Performance of a Rectangular Floating Breakwater With and Without Pneumatic Chambers: An Experimental Study, Ocean Eng., 51, pp.16~27. https://doi.org/10.1016/j.oceaneng.2012.05.008
  7. Hong, S.Y., Kim, J.H., Cho, S.K., Choi, Y.R., Kim, Y.S. (2005) Numerical and Experimental Study on Hydrodynamic Interaction of Side-by-side Moored Multiple Vessels, Ocean Eng., 32(7), pp.783~801. https://doi.org/10.1016/j.oceaneng.2004.10.003
  8. Jeong, S.T., Park, W.S., L ee, H.C. (2002) Finite Element Analysis for Multiple Floating Breakwaters, J. Korean Soc, Coast, & Ocean Eng., 14(4), pp.257~264.
  9. Kim, B.W., Sung, H.G., Kim, J.H., Hong, S.Y. (2013) Comparison of Linear Spring and Nonlinear FEM Methods in Dynamic Coupled Analysis of Floating Structure and Mooring System, J. Fluid& Struct., 42, pp.205~227. https://doi.org/10.1016/j.jfluidstructs.2013.07.002
  10. Loukogeorgaki, E., Yagci, O., Kabdasli, M.S. (2014) 3D Experimental Investigation of the Structural Response and the Effectiveness of a Moored Floating Breakwater with Flexibly Connected Modules, Coast. Eng., 91, pp.164~180. https://doi.org/10.1016/j.coastaleng.2014.05.008
  11. McCartney, B.L. (1985) Floating Breakwater Design, J. Waterway, Port, Coast., & Ocean Eng., 111(2), pp.304~318. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(304)
  12. Sutko, A.A., Haden, E.L. (1974) The Effect of Surge, Heave and Pitch on the Performance of a Floating Breakwter, Floating Breakwaters Conference Papers, University of Rhode Island, Marine Technical Report Series, 24, pp.21~39.
  13. Western Canada Hydraulic Laboratories Ltd. (1981) Development of a Manual for the Design of Floating Breakwaters, Canadian Manuscript Report of Fisheries and Aquatic Sciences, p.1629.
  14. Williams, A.N., Abul-Azm, A.G. (1997) Dual Pontoon Floating Breakwater, Ocean Eng., 24(5), pp.465~478. https://doi.org/10.1016/S0029-8018(96)00024-8
  15. Zhang, C., Magee, A.R. (2021) Effectiveness of Floating Breakwater in Special Configurations for Protecting Nearshore Infrastructures, J. Mar. Sci. & Eng., 9(7), p.785. https://doi.org/10.3390/jmse9070785
  16. Zhang, H., Zhou, B., Vogel, C., Willden, R., Zang, J., Geng, J. (2020) Hydrodynamic Performance of a Dual-Floater Hybrid System Combining a Floating Breakwater and an Oscillating-Buoy Type Wave Energy Converter, Appl. Energy, 259, p.114212. https://doi.org/10.1016/j.apenergy.2019.114212