DOI QR코드

DOI QR Code

Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities

  • Eun-Ji Song (Research Group of Personalized Diet, Korea Food Research Institute) ;
  • Ji-Hee Shin (Research Group of Personalized Diet, Korea Food Research Institute)
  • Received : 2022.09.30
  • Accepted : 2022.10.18
  • Published : 2022.12.28

Abstract

Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.

Keywords

Acknowledgement

This work was supported by the Main Research Program (grant number E0170600-06) of the Korea Food Research Institute (KFRI), funded by the Ministry of Science and ICT.

References

  1. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. https://doi.org/10.1038/nature11234
  2. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24.
  3. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270. https://doi.org/10.1038/nrg3182
  4. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227. https://doi.org/10.1038/nature11053
  5. Fierer N, Hamady M, Lauber CL, Knight R. 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA 105: 17994-17999. https://doi.org/10.1073/pnas.0807920105
  6. Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. New Eng. J. Med. 375: 2369-2379. https://doi.org/10.1056/NEJMra1600266
  7. Moschen AR, Wieser V, Tilg H. 2012. Dietary factors: major regulators of the gut's microbiota. Gut Liver 6: 411-416. https://doi.org/10.5009/gnl.2012.6.4.411
  8. Vakili S, Caudill MA. 2007. Personalized nutrition: Nutritional genomics as a potential tool for targeted medical nutrition therapy. Nutr. Rev. 65: 301-315. https://doi.org/10.1111/j.1753-4887.2007.tb00308.x
  9. Santos JL, Boutin P, Verdich C, Holst C, Larsen LH, Toubro S, et al. 2006. Genotype-by-nutrient interactions assessed in European obese women. Eur. J. Nutr. 45: 454-462. https://doi.org/10.1007/s00394-006-0619-6
  10. Horigan G, McNulty H, Ward M, Strain J, Purvis J, Scott JM. 2010. Riboflavin lowers blood pressure in cardiovascular disease patients homozygous for the 677C→ T polymorphism in MTHFR. J. Hypertens. 28: 478-486. https://doi.org/10.1097/HJH.0b013e328334c126
  11. Wilson CP, Ward M, McNulty H, Strain J, Trouton TG, Horigan G, et al. 2012. Riboflavin offers a targeted strategy for managing hypertension in patients with the MTHFR 677TT genotype: a 4-y follow-up. Am. J. Clin. Nutr. 95: 766-772. https://doi.org/10.3945/ajcn.111.026245
  12. Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. 2019. Precision nutrition and the microbiome part II: potential opportunities and pathways to commercialisation. Nutrients 11: 1468.
  13. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163: 1079-1094. https://doi.org/10.1016/j.cell.2015.11.001
  14. Southgate D. n1998. How much and what classes of carbohydrate reach the colon. Eur. J. Cancer Prev. 7 Suppl 2: S81-82.
  15. Stephen A, Haddad A, Phillips S. 1983. Passage of carbohydrate into the colon: direct measurements in humans. Gastroenterology 85: 589-595. https://doi.org/10.1016/0016-5085(83)90012-4
  16. Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20: 779-786. https://doi.org/10.1016/j.cmet.2014.07.003
  17. Zmora N, Suez J, Elinav E. 2019. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16: 35-56. https://doi.org/10.1038/s41575-018-0061-2
  18. Danneskiold-Samsoe NB, Barros HDdFQ, Santos R, Bicas JL, Cazarin CBB, Madsen L, et al. 2019. Interplay between food and gut microbiota in health and disease. Food Res. Int. 115: 23-31. https://doi.org/10.1016/j.foodres.2018.07.043
  19. Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science 362: 776-780. https://doi.org/10.1126/science.aau5812
  20. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52-60. https://doi.org/10.1016/j.phrs.2012.10.020
  21. Ma N, Tian Y, Wu Y, Ma X. 2017. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Peptide Sci. 18: 795-808.
  22. Delzenne NM, Knudsen C, Beaumont M, Rodriguez J, Neyrinck AM, Bindels LB. 2019. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis. Proc. Nutr. Soc. 78: 319-328. https://doi.org/10.1017/S0029665118002756
  23. Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG, et al. 2015. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5: 12689.
  24. Portune KJ, Benitez-Paez A, Del Pulgar EMG, Cerrudo V, Sanz Y. 2017. Gut microbiota, diet, and obesity-related disorders-The good, the bad, and the future challenges. Mol. Nutr. Food Res. 61: 1600252.
  25. Dawson PA. 2016. Bile acid metabolism. pp. 359-389. Biochem. Lipids, Lipoproteins and Membranes.
  26. Biesalski HK. 2016. Nutrition meets the microbiome: micronutrients and the microbiota. Annal. NY Acad. Sci. 1372: 53-64. https://doi.org/10.1111/nyas.13145
  27. Kemperman RA, Bolca S, Roger LC, Vaughan EE. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology 156: 3224-3231. https://doi.org/10.1099/mic.0.042127-0
  28. Li Q, Van de Wiele T. 2021. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit. Rev. Food Sci.Nutr. 13: 1-27.
  29. Gross G, Jacobs DM, Peters S, Possemiers S, van Duynhoven J, Vaughan EE, et al. 2010. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem. 58: 10236-10246. https://doi.org/10.1021/jf101475m
  30. Liu C, Vervoort J, van den Elzen J, Beekmann K, Baccaro M, de Haan L, et al. 2021. Interindividual differences in human in vitro intestinal microbial conversion of green tea (-)-epigallocatechin-3-O-gallate and consequences for activation of Nrf2 mediated gene expression. Mol. Nutr. Food Res. 65: 2000934.
  31. Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, et al. 2020. Interindividual differences in human intestinal microbial conversion of (-)-epicatechin to bioactive phenolic compounds. J. Agric. Food Chem. 68: 14168-14181. https://doi.org/10.1021/acs.jafc.0c05890
  32. Yamakoshi J, Tokutake S, Kikuchi M, Kubota Y, Konishi H, Mitsuoka T. 2001. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microb.Ecol. Health Dis. 13: 25-31.
  33. Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI. 2013. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24: 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001
  34. De Filippis F, Vitaglione P, Cuomo R, Berni Canani R, Ercolini D. 2018. Dietary interventions to modulate the gut microbiome-how far away are we from precision medicine. Inflamm. Bowel Dis. 24: 2142-2154. https://doi.org/10.1093/ibd/izy080
  35. Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. New Eng. J. Med. 375: 2369-2379. https://doi.org/10.1056/NEJMra1600266
  36. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563. https://doi.org/10.1038/nature12820
  37. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555: 210-215. https://doi.org/10.1038/nature25973
  38. Tanaka M, Nakayama J. 2017. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66: 515-522. https://doi.org/10.1016/j.alit.2017.07.010
  39. Heiman ML, Greenway FL. 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5: 317-320. https://doi.org/10.1016/j.molmet.2016.02.005
  40. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8: 2218-2230. https://doi.org/10.1038/ismej.2014.63
  41. Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. 2015. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17: 4954-4964. https://doi.org/10.1111/1462-2920.13006
  42. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. 2017. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15: 630-638. https://doi.org/10.1038/nrmicro.2017.58
  43. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500: 585-588. https://doi.org/10.1038/nature12480
  44. Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M, Campoy C, et al. 2009. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17: 1906-1915. https://doi.org/10.1038/oby.2009.112
  45. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. 2017. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol. Nutr. Food Res. 61: 1600324.
  46. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M, et al. 2017. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25: 1243-1253. e1245. https://doi.org/10.1016/j.cmet.2017.05.002
  47. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. 2011. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140: 976-986. https://doi.org/10.1053/j.gastro.2010.11.049
  48. Kolida S, Meyer D, Gibson G. 2007. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr. 61: 1189-1195. https://doi.org/10.1038/sj.ejcn.1602636
  49. Bennet SM, Bohn L, Storsrud S, Liljebo T, Collin L, Lindfors P, et al. 2018. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 67: 872-881. https://doi.org/10.1136/gutjnl-2016-313128
  50. Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, et al. 2015. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther. 42: 418-427. https://doi.org/10.1111/apt.13286
  51. Kong LC, Wuillemin P-H, Bastard J-P, Sokolovska N, Gougis S, Fellahi S, et al. 2013. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am. J. Clin. Nutr. 98: 1385-1394. https://doi.org/10.3945/ajcn.113.058099
  52. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65: 426-436. https://doi.org/10.1136/gutjnl-2014-308778
  53. Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, et al. 2021. The baseline gut microbiota directs dieting-induced weight loss trajectories. Gastroenterology 160: 2029-2042. e2016. https://doi.org/10.1053/j.gastro.2021.01.029
  54. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. https://doi.org/10.1038/nature09944
  55. Mobeen F, Sharma V, Tulika P. 2018. Enterotype variations of the healthy human gut microbiome in different geographical regions. Bioinformation 14: 560-573. https://doi.org/10.6026/97320630014560
  56. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107: 14691-14696. https://doi.org/10.1073/pnas.1005963107
  57. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108. https://doi.org/10.1126/science.1208344
  58. Christensen L, Roager HM, Astrup A, Hjorth MF. 2018. Microbial enterotypes in personalized nutrition and obesity management. Am. J. Clin. Nutr. 108: 645-651. https://doi.org/10.1093/ajcn/nqy175
  59. Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3: 8-16.
  60. Lim MY, Rho M, Song Y-M, Lee K, Sung J, Ko G. 2014. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci. Rep. 4: 7348.
  61. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. 2017. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 7: 2594.
  62. Wu Q, Pi Xe, Liu W, Chen H, Yin Y, Yu HD, et al. 2017. Fermentation properties of isomaltooligosaccharides are affected by human fecal enterotypes. Anaerobe 48: 206-214. https://doi.org/10.1016/j.anaerobe.2017.08.016
  63. Fu T, Pan L, Shang Q, Yu G. 2021. Fermentation of alginate and its derivatives by different enterotypes of human gut microbiota: Towards personalized nutrition using enterotype-specific dietary fibers. Int. J. Biol. Macromol. 183: 1649-1659. https://doi.org/10.1016/j.ijbiomac.2021.05.135
  64. Li J, Fu R, Yang Y, Horz H-P, Guan Y, Lu Y, et al. 2018. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Syst. Appl. Microbiol. 41: 1-12. https://doi.org/10.1016/j.syapm.2017.09.006
  65. Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, Okuda S, et al. 2016. Species-function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1: 16088.
  66. Hjorth M, Roager HM, Larsen T, Poulsen S, Licht TR, Bahl MI, et al. 2018. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obesity 42: 580-583. https://doi.org/10.1038/ijo.2017.220
  67. Hjorth MF, Blaedel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. 2019. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obesity 43: 149-157. https://doi.org/10.1038/s41366-018-0093-2
  68. Christensen L, Vuholm S, Roager HM, Nielsen DS, Krych L, Kristensen M, et al. 2019. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149: 2174-2181. https://doi.org/10.1093/jn/nxz198
  69. Zou H, Wang D, Ren H, Cai K, Chen P, Fang C, et al. 2020. Effect of caloric restriction on BMI, gut microbiota, and blood amino acid levels in non-obese adults. Nutrients 12: 631.
  70. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. 2014. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 80: 1142-1149. https://doi.org/10.1128/AEM.03549-13
  71. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22: 971-982. https://doi.org/10.1016/j.cmet.2015.10.001
  72. Kang C, Zhang Y, Zhu X, Liu K, Wang X, Chen M, et al. 2016. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes. J. Clin. Endocrinol. Metab. 101: 4681-4689. https://doi.org/10.1210/jc.2016-2786
  73. Song EJ, Han K, Lim TJ, Lim S, Chung MJ, Nam MH, et al. 2020. Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. EPMA J. 11: 31-51. https://doi.org/10.1007/s13167-020-00198-y
  74. Jeffery IB, Claesson MJ, O'Toole PW, Shanahan F. 2012. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10: 591-592. https://doi.org/10.1038/nrmicro2859
  75. Cheng M, Ning K. 2019. Stereotypes about enterotype: the old and new ideas. Genomics Proteomics Bioinformatics 17: 4-12. https://doi.org/10.1016/j.gpb.2018.02.004
  76. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, et al. 2014. Rethinking "enterotypes". Cell Host Microbe. 16: 433-437. https://doi.org/10.1016/j.chom.2014.09.013
  77. Spencer SP, Fragiadakis GK, Sonnenburg JL. 2019. Pursuing human-relevant gut microbiota-immune interactions. Immunity 51: 225-239. https://doi.org/10.1016/j.immuni.2019.08.002
  78. Gibson PR. 2017. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 32: 5-7. https://doi.org/10.1111/jgh.13685
  79. Vervier K, Moss S, Kumar N, Adoum A, Barne M, Browne H, et al. 2022. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut 71: 1821-1830. https://doi.org/10.1136/gutjnl-2021-325177
  80. Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. 2018. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 145: 163-168. https://doi.org/10.1016/j.eplepsyres.2018.06.015
  81. Berding K, Donovan SM. 2018. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 12: 515.
  82. Tomova A, Soltys K, Kemenyova P, Karhanek M, Babinska K. 2020. The influence of food intake specificity in children with autism on gut microbiota. Int. J. Mol. Sci. 21: 2797.
  83. Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, et al. 2021. Autism-related dietary preferences mediate autismgut microbiome associations. Cell 184: 5916-5931. e5917. https://doi.org/10.1016/j.cell.2021.10.015
  84. Tarca AL, Carey VJ, Chen X-w, Romero R, Draghici S. 2007. Machine learning and its applications to biology. PLoS Comput. Biol. 3: e116.
  85. Ghaffari P, Shoaie S, Nielsen LK. 2022. Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. J. Transl. Med. 20: 173.