DOI QR코드

DOI QR Code

Functional Roles of Exosomes in Allergic Contact Dermatitis

  • Bocui Song (Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Qian Chen (Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Yuqi Li (Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Shuang Zhan (Animal Husbandry and Veterinary Station of Yongji Economic Development Zone) ;
  • Rui Zhao (Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Xue Shen (Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Min Liu (Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Chunyu Tong (Department of Biological Science, College of Life Science and Technology, Heilongjiang Bayi Agricultural University)
  • Received : 2022.06.16
  • Accepted : 2022.09.06
  • Published : 2022.12.28

Abstract

Allergic contact dermatitis (ACD) is an allergen-specific T-cell-mediated inflammatory response, albeit with unclear pathogenesis. Exosomes are nanoscale extracellular vesicles secreted by several cell types and widely distributed in various biological fluids. Exosomes affect the occurrence and development of ACD through immunoregulation among other ways. Nevertheless, the role of exosomes in ACD warrants further clarification. This review examines the progress of research into exosomes and their involvement in the pathogenesis, diagnosis, and treatment of ACD and provides ideas for exploring new diagnostic and treatment methods for this disease.

Keywords

Acknowledgement

This research was supported by the National Nature Science Foundation of China (31702289), the Postdoctoral Scientific Research Start-up Fund of Heilongjiang (LBH-Q21158), the Key Research and Development Project of Heilongjiang Province of China (GZ20210101), the cultivation project of Heilongjiang Bayi Agricultural University (XDB-2016-22), the College Students' Innovation and Entrepreneurship Training Program in Heilongjiang Province: Inhibitory effect of gossypol on eotaxin in IgE mediated type I allergic reaction mice (201910223026).

References

  1. Fernandez-Messina L, Rodriguez-Galan A, de Yebenes VG, Gutierrez-Vazquez C, Tenreiro S, Seabra MC, et al. 2020. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep. 21: e48925.
  2. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen HY, et al. 2018. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20: 332-343. https://doi.org/10.1038/s41556-018-0040-4
  3. Zabeo D, Cvjetkovic A, Lasser C, Schorb M, Lotvall J, Hoog JL. 2017. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles 6: 1329476.
  4. Keller MD, Ching KL, Liang FX, Dhabaria A, Tam K, Ueberheide BM, et al. 2020. Decoy exosomes provide protection against bacterial toxins. Nature 579: 260-264. https://doi.org/10.1038/s41586-020-2066-6
  5. Sjoqvist S, Kasai Y, Shimura D, Ishikawa T, Ali N, Iwata T, et al. 2019. Oral keratinocyte-derived exosomes regulate proliferation of fibroblasts and epithelial cells. Biochem. Biophys. Res. Commun. 514: 706-718. https://doi.org/10.1016/j.bbrc.2019.04.202
  6. Li Q, Zhao H, Chen W, Huang P, Bi J. 2019. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis. Int. J. Biochem. Cell Biol. 114: 105570.
  7. Angioni R, Liboni C, Herkenne S, Sanchez-Rodriguez R, Borile G, Marcuzzi E, et al. 2020. CD73+  extracellular vesicles inhibit angiogenesis through adenosine A2B receptor signalling. J. Extracell. Vesicles 9: 1757900.
  8. Zhu T, Wang Y, Jin H, Li L. 2019. The role of exosome in autoimmune connective tissue disease. Ann. Med. 51: 101-108.
  9. Nguyen SH, Dang TP, MacPherson C, Maibach H, Maibach HI. 2008. Prevalence of patch test results from 1970 to 2002 in a multicentre population in North America (NACDG). Contact Dermatitis 58: 101-106.
  10. Tan CH, Rasool S, Johnston GA. 2014. Contact dermatitis: allergic and irritant. Clin. Dermatol. 32: 116-124. https://doi.org/10.1016/j.clindermatol.2013.05.033
  11. Nassau S, Fonacier L. 2020. Allergic contact dermatitis. Med. Clin. 104: 61-76.
  12. Cordoba S, Garcia-Donoso C, Villanueva CA, Jesus Borbujo. 2011. Allergic contact dermatitis from a veterinary antiinflammatory gel containing 2-hydroxyethyl salicylate. Dermatitis 22: 171-172. https://doi.org/10.2310/6620.2011.10120
  13. Ramos L, Cabral R, Goncalo M. 2014. Allergic contact dermatitis caused by acrylates and methacrylates-a 7-year study. Contact Dermatitis 71: 102-107.
  14. Koumaki D, Bergendorff O, Bruze M, Jesus B. 2019. Allergic contact dermatitis to shin pads in a hockey player: acetophenone is an emerging allergen. Dermatitis 30: 162-163. https://doi.org/10.1097/DER.0000000000000444
  15. Jacob SE, Matiz C, Herro EM. 2011. Compositae-associated allergic contact dermatitis from bisabolol. Dermatitis 22: 102-105. https://doi.org/10.2310/6620.2011.10118
  16. T Herro EM, Jacob SE. 2012. Butylhydroxytoluene - from jet fuels to cosmetics?. Dermatitis 23: 90-91. https://doi.org/10.1097/DER.0b013e31824a5e80
  17. Aakhus AE, Warshaw EM. 2011. Allergic contact dermatitis from cetyl alcohol. Dermatitis 22: 56-57. https://doi.org/10.2310/6620.2011.10086
  18. Suzuki K, Hirokawa K, Yagami A, Kayoko M. 2011. Allergic contact dermatitis from carmine in cosmetic blush. Dermatitis 22: 348-349.
  19. Bruze M, Zimerson E. 2011. Dimethyl fumarate. Dermatitis 22: 3-7. https://doi.org/10.2310/6620.2011.00002
  20. Schnuch A, Geier J, Uter W, Peter J Frosch. 2007. Majantol®-a new important fragrance allergen. Contact Dermatitis 57: 48-50. https://doi.org/10.1111/j.1600-0536.2006.01062.x
  21. Gonzalez-Perez R, Trebol I, Garcia-Rio I, Arregui MA, Soloieta R. 2007. Allergic contact dermatitis from methylene-bisbenzotriazolyl tetramethylbutylphenol (Tinosorb M (R)). Contact Dermatitis 56: 121.
  22. Urwin R, Wilkinson M. 2013. Methylchloroisothiazolinone and methylisothiazolinone contact allergy: a new 'epidemic'. Contact Dermatitis 68: 253-255.
  23. Kornik R, Zug KA. 2008. Nickel. Dermatitis 19: 3-8. https://doi.org/10.2310/6620.2008.07082
  24. Mose AP, Frost S, Ohlund U, Andersen KE. 2013. Allergic contact dermatitis from octylisothiazolinone. Contact Dermatitis 69: 49-52. https://doi.org/10.1111/cod.12068
  25. Tran A, Pratt M, DeKoven J. 2010. Acute allergic contact dermatitis of the lips from peppermint oil in a lip balm. Dermatitis 21: 111-115. https://doi.org/10.2310/6620.2010.09040
  26. DeLeo VA. 2006. p-Phenylenediamine. Dermatitis 17: 53-55.
  27. Cressey B. 2012. Contact allergy to sorbitans: a follow-up study. Dermatitis 23: 158-161. https://doi.org/10.1097/DER.0b013e318260d75f
  28. Jin L, Cao JJ. 2020. Update of immunological mechanism of allergic contact dermatitis. China J. Leprosy Skin Dis. 36: 61-64.
  29. Peng XB. 1993. Pathogenesis of allergic and irritant contact dermatitis. Int. J. Dermatol. Venereol. 5: 307-308.
  30. Wei RY, Zhao ZT, Chen TC, Diao Y, Li Z, Gao H, et al. 2016. Immune mechanism of allergic contact dermatitis. Chinese J. Allergy Clin. Immunol. 10: 255-263.
  31. Zhao L, Li LF. 2015. The role of regulatory T cells in allergic contact dermatitis. J. Pract. Dermatol. 8: 201-204.
  32. DeKoven JG, Silverberg JI, Warshaw EM, Atwater AR, Reeder MJ, Sasseville D, et al. 2021. North American contact dermatitis group patch test results: 2017-2018. Dermatitis 32: 111-123. https://doi.org/10.1097/DER.0000000000000729
  33. Nosbaum A, Vocanson M, Rozieres A, Hennino A, Nicolas JF. 2009. Allergic and irritant contact dermatitis. Eur. J. Dermatol. 19: 325-332. https://doi.org/10.1684/ejd.2009.0686
  34. Chen JK, Jacob SE, Nedorost ST, Hanifin JM, Simpson EL, Boguniewicz M, et al. 2016. A pragmatic approach to patch testing atopic dermatitis patients: clinical recommendations based on expert consensus opinion. Dermatitis 27: 186-278. https://doi.org/10.1097/DER.0000000000000208
  35. Owen JL, Vakharia PP, Silverberg JI. 2018. The role and diagnosis of allergic contact dermatitis in patients with atopic dermatitis. Am. J. Clin. Dermatol. 19: 293-302. https://doi.org/10.1007/s40257-017-0340-7
  36. Lim HW, Collins SAB, Resneck JSJr, Bolognia JL, Hodge JA, Rohrer TA, et al. 2017. The burden of skin disease in the United States. J. Am. ACAD Dermatol. 76: 958-1030. https://doi.org/10.1016/j.jaad.2016.12.043
  37. Mowad CM, Anderson B, Scheinman P, Pootongkam S, Nedorost S, Brod B, et al. 2016. Allergic contact dermatitis: patient diagnosis and evaluation. J. Am. ACAD Dermatol. 74: 1029-1069. https://doi.org/10.1016/j.jaad.2015.02.1139
  38. Pereira N, Coutinho I, Andrade P, Margarida G. 2013. The UV filter Tinosorb M, containing decyl glucoside, is a frequent cause of allergic contact dermatitis. Dermatitis 24: 41-43. https://doi.org/10.1097/DER.0b013e31827cd36f
  39. European Multicentre Photopatch Test Study (EMCPPTS) Taskforce. 2012. A European multicentre photopatch test study. Br. J. Dermatol. 166: 1002-1009. https://doi.org/10.1111/j.1365-2133.2012.10857.x
  40. Kostner L, Anzengruber F, Guillod C, Recher M, Schmid-Grendelmeier P, Navarini AA. 2017. Allergic contact dermatitis. Immunol. Allergy Clin. 37: 141-152.
  41. Batagov AO, Kurochkin IV. 2013. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions. Biol. Direct 8: 12.
  42. Igami K, Uchiumi T, Ueda S, Kamioka K, Setoyama D, Gotoh K, et al. 2020. Characterization and function of medium and large extracellular vesicles from plasma and urine by surface antigens and Annexin V. PeerJ. Anal. Chem. 2: e4.
  43. Van Niel G, D'Angelo G, Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19: 213-228. https://doi.org/10.1038/nrm.2017.125
  44. Elsharkasy OM, Nordin JZ, Hagey DW, Jong OG, Schiffelers RM, ELAndaloussi S, et al. 2020. Extracellular vesicles as drug delivery systems: why and how?. Adv. Drug Deliv. Rev. 159: 332-343. https://doi.org/10.1016/j.addr.2020.04.004
  45. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. 2014. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124: 2136-2146. https://doi.org/10.1172/JCI70577
  46. Yu Y, Abudula M, Li C, Chen ZB, Zhang Y, Chen YC. 2019. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir. Res. 20: 217.
  47. He Y, He Z, Leone S, Liu SB. 2021. Milk exosomes transfer oligosaccharides into macro phages to modulate immunity and Attenuate Adherent-Invasive E. coli (AIEC) infection. Nutrients 13: 3198.
  48. Guo BB, Bellingham SA, Hill AF. 2016. Stimulating the release of exosomes increases the intercellular transfer of prions. J. Biol. Chem. 291: 5128-5137. https://doi.org/10.1074/jbc.M115.684258
  49. Hong Y, Lee J, Vu TH, Lee S, Lillehoj HS, Hong YH. 2021. Exosomes of lipopolysaccharide-stimulated chicken macrophages modulate immune response through the MyD88/NF-κB signaling pathway. Dev. Comp. Immunol. 115: 103908.
  50. Alhasan AH, Patel PC, Choi CHJ, Mirkin CA. 2014. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small 10: 186-192. https://doi.org/10.1002/smll.201302143
  51. Li P, Kaslan M, Lee SH, Yao J, Gao ZQ. 2017. Progress in exosome isolation techniques. Theranostics. 7: 789-804. https://doi.org/10.7150/thno.18133
  52. Coughlan C, Bruce K D, Burgy O, Boyd TD, Michel CR, Garcia-Perez JE, et al. 2020. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr. Protoc. Cell Biol. 88: e110.
  53. Gardiner C, Vizio DD, Sahoo S, Thery C, Witwer KW, Wauben M, et al. 2016. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracell. Vesicles 5: 32945.
  54. Thery C, Amigorena S, Raposo G, Clayton A. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30: 3.22. 1-3.22. 29.
  55. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. 2014. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3: 24858.
  56. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. 2012. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56: 293-304. https://doi.org/10.1016/j.ymeth.2012.01.002
  57. Perez-Gonzalez R, Gauthier SA, Kumar A, Saito M, Saito M, Levy E. 2017. A method for isolation of extracellular vesicles and characterization of exosomes from brain extracellular space. Methods Moi. Biol. 2017: 139-151.
  58. Street JM, Koritzinsky EH, Glispie DM, Yuen PST. 2017. Urine exosome isolation and characterization. Methods Mol. Biol. 2017: 413-423.
  59. Gao M, Cai J, Zitkovsky HS, Chen B, Guo LF. 2022. Comparison of yield, purity, and functional properties of large-volume exosome isolation using ultrafiltration and polymer-based precipitation. Methods Mol. Biol. 149: 638-649.
  60. Musante L, Tataruch D, Gu D, Benito-Martin A, Calzaferri G, Aherne S, et al. 2014. A simplified method to recover urinary vesicles for clinical applications and sample banking. Sci. Rep. 4: 7532.
  61. Muller L, Hong CS, Stolz DB, Watkinsab SC, Whiteside TL. 2014. Isolation of biologically-active exosomes from human plasma. J. Immunol. Methods 411: 55-65. https://doi.org/10.1016/j.jim.2014.06.007
  62. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PST, et al. 2007. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 292: F1657-F1661. https://doi.org/10.1152/ajprenal.00434.2006
  63. Alvarez ML, Khosroheidari M, Ravi RK, DiStefano1 JK. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82: 1024-1032. https://doi.org/10.1038/ki.2012.256
  64. Boing AN, Van Der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. 2014. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3: 23430.
  65. Welton JL, Webber JP, Botos LA, Jones M, Clayton A. 2015. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J. Extracell. Vesicles 4: 27269.
  66. van Eijndhoven MAJ, Zijlstra JM, Groenewegen NJ, Drees EEE, van Niele S, Baglio SR, et al. 2016. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 1: e89631.
  67. Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, Roura S, Borras FE. 2019. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol. Life Sci. 76: 2369-2382. https://doi.org/10.1007/s00018-019-03071-y
  68. Monguio-Tortajada M, Prat-Vidal C, Moron-Font M, Clos-Sansalvador M, Calle A, Gastelurrutia P, et al. 2021. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioact. Mater. 6: 3314-3327. https://doi.org/10.1016/j.bioactmat.2021.02.026
  69. Monguio-Tortajada M, Moron-Font M, Gamez-Valero A, Carreras-Planella L, Borras FE, Franquesa M, et al. 2019. Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography. Curr. Protoc. Stem Cell Biol. 49: e82.
  70. Sitar S, Kej ar A, Pahovnik D, Kogej K, Tusek-Znidaric M, Lenass M, et al. 2015. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal. Chem. 87: 9225-9233. https://doi.org/10.1021/acs.analchem.5b01636
  71. Kang D, Oh S, Ahn S M, Lee BH, Moon MH. 2008. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Proteome Res. 7: 3475-3480. https://doi.org/10.1021/pr800225z
  72. Weng Y, Sui Z, Shan Y, Hu YC, Chen YuB, Zhang LiH, et al. 2016. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 141: 4640-4646. https://doi.org/10.1039/C6AN00892E
  73. Rider MA, Hurwitz SN, Meckes DG. 2016. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6: 23978.
  74. Zhao L, Wang H, Fu J, Wu X, Liang XY, Liu XY, et al. 2022. Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis. Biosens. Bioelectron. 214: 114487.
  75. Jia Y, Ni Z, Sun H, Wang C. 2019. Microfluidic approaches toward the isolation and detection of exosome nanovesicles. IEEE 7: 45080-45098.
  76. Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen CY, et al. 2017. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 114: 10584-10589 https://doi.org/10.1073/pnas.1709210114
  77. Yang Q, Cheng L, Hu L, Lou DD, Zhang T, Li JY, et al. 2020. An integrative microfluidic device for isolation and ultrasensitive detection of lung cancer-specific exosomes from patient urine. Biosens. Bioelectron. 163: 112290.
  78. Tayebi M, Zhou Y, Tripathi P, Chandramohanadas R, Ai Y. 2020. Exosome purification and analysis using a facile microfluidic hydrodynamic trapping device. Anal. Chem. 92: 10733-10742. https://doi.org/10.1021/acs.analchem.0c02006
  79. Wang Z, Zong S, Wang Y, Li N, Li L, Lu J, et al. 2018. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10: 9053-9062. https://doi.org/10.1039/C7NR09162A
  80. Gao X, Ran N, Dong X, Zuo BF, Yang R, Zhou QB, et al. 2018. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 10: eaat0195.
  81. Yang J, Pan B, Zeng F, He BS, Gao YF, Liu XL, et al. 2021. Magnetic colloid antibodies accelerate small extracellular vesicles isolation for point-of-care diagnostics. Nano Lett. 21: 2001-2009. https://doi.org/10.1021/acs.nanolett.0c04476
  82. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari El, Radano G, et al. 2015. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87: 46-58. https://doi.org/10.1016/j.ymeth.2015.05.028
  83. Wang J, Cai X, Wang Z, Chen XQ, Kun L, Cheng H, et al. 2019. Isolation and identification of exosomes from human adipose-derived mesenchymal stem cells. Chinese J. Tissue Eng. Res. 23: 2651.
  84. Nakai W, Yoshida T, Diez D, Miyatake YJ, Nishibu T, Imawaka N, et al. 2016. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6: 33935.
  85. Lin S, Yu Z, Chen D, Wang ZG, Miao JM, Li QC, et al. 2020. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 16: 1903916.
  86. Abramowicz A, Widlak P, Pietrowska M. 2016. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol. Biosyst. 12: 1407-1419. https://doi.org/10.1039/C6MB00082G
  87. Wang L, Liu L, Liu J. 2021. Advances in isolation and purification techniques for exosomes. Chemistry 84: 1023-1030.
  88. Banchereau J, Briere F, Caux C, Banchereau J, Briere F, Caux C, et al. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  89. Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179: 2242-2249. https://doi.org/10.4049/jimmunol.179.4.2242
  90. Nazimek K, Askenase P W, Bryniarski K. 2018. Antibody light chains dictate the specificity of contact hypersensitivity effector cell suppression mediated by exosomes. Int. J. Mol. Sci. 19: 2656.
  91. Fraser KB, Moehle MS, Daher JPL, Webber PJ, Williams JY, Stewart CA, et al. 2013. LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22: 4988-5000. https://doi.org/10.1093/hmg/ddt346
  92. Liu Z, Lee J, Krummey S, Lu W, Cai HB, Lenardo MJ. 2011. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 12: 1063-1070. https://doi.org/10.1038/ni.2113
  93. Qu P, Zhao J, Hu H, Cao WB, Zhang YR, Qi J, et al. 2022. Loss of renewal of extracellular vesicles: harmful effects on embryo development in vitro. Int. J. Nanomed. 17: 2301-2318. https://doi.org/10.2147/IJN.S354003
  94. Ighodaro OM, Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J. Med. 54: 287-293.
  95. Wang Y, Branicky R, Noe A, Hekimi S. 2018. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217: 1915-1928. https://doi.org/10.1083/jcb.201708007
  96. Ishihara Y, Takemoto T, Itoh K, Yamazaki T. 2015. Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses. J. Biol. Chem. 290: 22805-22817. https://doi.org/10.1074/jbc.M115.659151
  97. Liu FB. 2018. Inflammasome-derived exosomes activate NF-κB signaling in macrophages. Anhui Medical University.
  98. McFadden JP, Puangpet P, Basketter DA, Dearman RJ, Kimber I. 2013. Why does allergic contact dermatitis exist?. Br. J. Dermatol. 168: 692-699. https://doi.org/10.1111/bjd.12145
  99. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, et al. 2013. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J. Biol. Chem. 288: 36691-36702. https://doi.org/10.1074/jbc.M113.512806
  100. Console L, Scalise M, Indiveri C. 2019. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta 488: 165-171. https://doi.org/10.1016/j.cca.2018.11.009
  101. Guo L, Lai P, Wang Y, Huang T, Chen XM, Luo CW, et al. 2019. Extracellular vesicles from mesenchymal stem cells prevent contact hypersensitivity through the suppression of Tc1 and Th1 cells and expansion of regulatory T cells. Int. Immunopharmacol. 74: 105663.
  102. Mohanty A, Tiwari-Pandey R, Pandey NR. 2019. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J. Cell Commun. Signal. 13: 303-318. https://doi.org/10.1007/s12079-019-00507-9
  103. Hough KP, Trevor JL, Strenkowski JG, Wang Y, Chacko BK, Tousif S, et al. 2018. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 18: 54-64. https://doi.org/10.1016/j.redox.2018.06.009
  104. Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, et al. 2018. Nickel; whether toxic or essential for plants and environment-A review. Plant Physiol. Biochem. 132: 641-651. https://doi.org/10.1016/j.plaphy.2018.10.014
  105. Xin R, Pan YL, Wang Y, Wang SY, Wang R, Xia B, et al. 2019. Nickel-refining fumes induce NLRP3 activation dependent on mitochondrial damage and ROS production in Beas-2B cells. Arch. Biochem. Biophys. 676: 108148.
  106. Nazimek K, Bryniarski K, Ptak W, Kormelink TG, Askenase PW. 2020. Orally administered exosomes suppress mouse delayed-type hypersensitivity by delivering miRNA-150 to antigen-primed macrophage APC targeted by exosome-surface anti-peptide antibody light chains. Int. J. Mol. Sci. 21: 5540.
  107. Spiewak R. 2008. Patch testing for contact allergy and allergic contact dermatitis. Open Allergy J. 1: 42-51. https://doi.org/10.2174/1874838400801010042
  108. Vennegaard MT, Bonefeld CM, Hagedorn PH, Bangsgaard N, Lovendorf MB, Odum N, et al. 2012. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis 67: 298-305. https://doi.org/10.1111/j.1600-0536.2012.02083.x
  109. Uccelli A, Moretta L, Pistoia V. 2008. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8: 726-736. https://doi.org/10.1038/nri2395
  110. Pang Y, Deng C, Geng S, Weng JY, Lai PL, Liao PJ, et al. 2017. Premature exhaustion of mesenchymal stromal cells from myelodysplastic syndrome patients. Am. J. Transl. Res. 9: 3462.
  111. Golubinskaya PA, Sarycheva MV, Dolzhikov AA, Bondarev VP, Stefanova MS, Soldatov VO, et al. 2021. Application of multipotent mesenchymal stem cell Secretome in the treatment of adjuvant arthritis and contact-allergic dermatitis in animal models. Pharm. Pharmacol. 8: 416-425. https://doi.org/10.19163/2307-9266-2020-8-6-416-425
  112. Li Y. 2019. The effects and mechanism of exosomes derived from human umbilical cord mesenchymal stem cells on contact hypersensitivity. South China University of Technology.
  113. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. 2002. Cells expressing indoleamine 2, 3-dioxygenase inhibit T cell responses. J. Immunol. 168: 3771-3776. https://doi.org/10.4049/jimmunol.168.8.3771
  114. Yan ML, Wang YD, Tian YF, Lai ZD, Yan LN. 2010. Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2, 3-dioxygenase. World J. Gastroenterol. 16: 636.
  115. Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174: 6440-6448. https://doi.org/10.4049/jimmunol.174.10.6440
  116. Bianco NR, Kim SH, Ruffner MA, Robbins PD. 2009. Therapeutic effect of exosomes from indoleamine 2, 3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 60: 380-389. https://doi.org/10.1002/art.24229