DOI QR코드

DOI QR Code

Resting cysts and vegetative cells of Pheopolykrikos hartmannii (W. Zimmermann) Matsuoka & Fukuyo(Dinophyceae): Morphology, phylogeny, and effect of temperature on germination

Pheopolykrikos hartmannii(W. Zimmermann) Matsuoka & Fukuyo 휴면포자와 유영세포: 형태적 특징 및 계통 분류, 발아에 미치는 온도 영향

  • Kyeong Yoon Kwak (Library of Marine Samples, Korea Institute of Ocean Science and Technology) ;
  • Joo Yeon Youn (Library of Marine Samples, Korea Institute of Ocean Science and Technology) ;
  • Hyun Jung Kim (Library of Marine Samples, Korea Institute of Ocean Science and Technology) ;
  • Kyong Ha Han (Library of Marine Samples, Korea Institute of Ocean Science and Technology) ;
  • Zhun Li (Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology) ;
  • Hyeon Ho Shin (Library of Marine Samples, Korea Institute of Ocean Science and Technology)
  • 곽경윤 (한국해양과학기술원 해양시료도서관) ;
  • 윤주연 (한국해양과학기술원 해양시료도서관) ;
  • 김현정 (한국해양과학기술원 해양시료도서관) ;
  • 한경하 (한국해양과학기술원 해양시료도서관) ;
  • ;
  • 신현호 (한국해양과학기술원 해양시료도서관)
  • Received : 2022.09.21
  • Accepted : 2022.10.28
  • Published : 2022.12.31

Abstract

The germination characteristics of the resting cysts of Pheopolykrikos hartmannii collected from the southern coastal sediments of Korea were studied at different temperature conditions, and the morphology and phylogeny of the germlings were examined. The resting cysts of Ph. hartmannii were round and characterized by a red accumulation body and many arrow-like spines and could germinate at temperature of 10 to 30℃. High germination rates (>90%) were observed at 15 and 20℃, indicating that the resting cysts could act as seed populations for the bloom initiation of Ph. hartmannii in Korean coastal waters in early summer or early fall. The morphology of the germlings was generally consistent with the previous description, and an apical groove characterized by a fully enclosed loop was observed. Phylogenetic analysis based on large SubUnit (LSU) rRNA gene sequences revealed that the germlings shared an identical sequence with the Korean and American isolates of Ph. hartmannii and was a sister clade of Polykrikos species.

한국 남해역의 퇴적물에서 분리한 Pheopolykrikos hartmannii 휴면포자는 구형으로 밝은 갈색을 띠고 있으며, 표면에는 길고 날카로운 돌기물이 관찰되고 내부에는 원형질과 함께 한개의 붉은색 색소체(red accumulation)가 있다. 이 휴면포자는 5℃를 제외하고, 10℃에서 30℃ 사이의 온도에서 발아하였고, 15℃와 20℃에서 높은 발아율(>90%)을 보였다. 휴면포자로부터 발아한 유영세포는 2개의 세포로 된 콜로니(two-celled colony) 형태로 관찰되었고, 전방세포의 상추구에서 고리 모양의 apical groove가 관찰되었다. 그리고 분자계통 분석 결과, Pheopolykrikos hartmannii는 Polykrikos종과 근연 관계로 확인되었다.

Keywords

Acknowledgement

본 연구는 해양생물 마이크로바이옴 분석과 적용 연구를 통한 마린바이오틱스 개발사업(20210469)과 해양생명자원기탁등록보존기관 운영사업(2022M01100), 한국연구재단의 한국형 광합성 미생물 소재 확보 및 활용 협력 센터 사업(NRF-2022M3H9A1083416)의 연구비로 수행되었음.

References

  1. Anderson DM and BA Keafer. 1987. An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis. Nature 325:616-617. https://doi.org/10.1038/325616a0
  2. Badylak S and EJ Phlips. 2004. Spatial and temporal patterns of phytoplankton composition in subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. J. Plankton Res. 26:1229-1247. https://doi.org/10.1093/plankt/fbh114
  3. Chai ZY, ZX Hu, YY Liu and YZ Tang. 2020. Proof of homothally of Pheopolykrikos hartmannii and details of cyst germination process. J. Oceanol. Limnol. 38:114-123. https://doi.org/10.1007/s00343-019-9077-x
  4. Choi MH, HS Seo and DS Kim. 2017. A study on the distribution of summer water temperatures of the central coast of the southern sea of Korea using numerical experimentation. J. Korean Soc. Mar. Environ. Saf. 23:83-90. https://doi.org/10.7837/kosomes.2017.23.1.083
  5. Darriba D, GL Taboada, R Doallo and D Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. https://doi.org/10.1038/nmeth.2109
  6. Garate-Lizarraga I, CJ Band-Schmidt and T Grayeb del Alamo. 2008. Myrionecta, Gyrodinium and Katodinium bloom in Gulf of California. Harmful Algae News 37:6-7.
  7. Godhe A, I Karunasagar, I Karunasagar and B Karlson. 2000. Dinoflagellate cysts in recent marine sediments from SW India. Bot. Marina 43:39-48. https://doi.org/10.1515/BOT.2000.004
  8. Gu H, KN Mertens, A Derrien, G Bilien, Z Li, P Hess, V Sechet, B Krock, A Amorim, Z Li, V Pospelova, KF Smith, L MacKenzie, JY Youn, HJ Kim and HH Shin. 2022. Unraveling the Gonyaulax baltica species complex: Cyst-theca relationship of Impagidinium variaseptum, Spiniferites pseudodelicatus sp. nov. and S. ristingensis (Gonyaulacaceae, Dinophyceae), with descriptions of Gonyaulax bohaiensis sp. nov, G. amoyensis sp. nov. and G. portimonensis sp. nov. J. Phycol. 58:465-486. https://doi.org/10.1111/jpy.13245
  9. Head MJ. 1996. Modern dinoflagellate cysts and their biological affinities. pp. 1197-1248. In: Palynology: Principles and Applications (Jansonius J and DC McGregor, eds.). American Association of Stratigraphic Palynologists Foundation.
  10. Hoppenrath M, M Elbrachter and G Drebes. 2009. Marine phytoplankton, selected microphytoplankton species from the North Sea around Helgoland and Sylt. J. Phycol. 46:622-625. https://doi.org/10.1111/j.1529-8817.2010.00842.x
  11. Hoppenrath M, N Yubuki, TR Bachvaroff and BS Leander. 2010. Re-classification of Pheopolykrikos hartmannii as Polykrikos (Dinophyceae) based partly on the ultrastructure of complex extrusomes. Eur. J. Protistol. 46:29-37. https://doi.org/10.1016/j.ejop.2009.08.003
  12. Huang CJ and QX Dong. 2001. Taxonomic and biological studies on organisms causing a large scale red tide in Zhujiang River Estuary in spring, 1998 III. Oceanol. Limnol. Sin. 32:1-6. https://doi.org/10.1142/9789812799555_0001
  13. Itakura S and M Yamaguchi. 2001. Germination characteristics of naturally occurring cysts of Alexandrium tamarense (Dinophyceae) in Hiroshima Bay, Inland Sea od Japan. Phycologia 40:263-267. https://doi.org/10.2216/i0031-8884-40-3-263.1
  14. Kim HG, JS Park and SG Lee. 1990. Coastal algal blooms caused by the cyst-forming dinoflagellates. Korean J. Fish. Aquat. Sci. 23:468-474.
  15. Kim KY, M Iwataki and CH Kim. 2008. Research Note: Molecular phylogenetic affiliations of Dissodinium pseudolunula, Pheopolykrikos hartmannii, Polykrikos cf. schwartzii and Polykrikos kofoidii to Gymnodinium sensu stricto species (Dinophyceae). Phycol. Res. 56:89-92. https://doi.org/10.1111/j.1440-1835.2008.00489.x
  16. Kim YO, MH Park and MS Han. 2002. Role of cyst germination in the bloom initiation of Alexandrium tamarense (Dinophyceae) in Masan Bay, Korea. Aquat. Microb. Ecol. 29:279-286. https://doi.org/10.3354/ame029279
  17. Kremp A and DM Anderson. 2000. Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea. J. Plankton Res. 22:1311-1327. https://doi.org/10.1093/plankt/22.7.1311
  18. Kumar S, G Stecher and K Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  19. Li Z, K Matsuoka and HH Shin. 2020. Revision of the life cycle of the harmful dinoflagellate Margalefidinium polykrikoides (Gymnodiniales, Dinophyceae) based on isolates from Korean coastal waters. J. Appl. Phycol. 32:1863-1873. https://doi.org/10.1007/s10811-020-02125-0
  20. Li Z, MS Han, K Matsuoka, SY Kim and HH Shin. 2014. Identification of the resting cyst of Cochlodinium polykrikoides Margalef (Dinophyceae, Gymnodiniales) in Korean coastal sediments. J. Phycol. 51:204-210. https://doi.org/10.1111/jpy.12252
  21. Matsuoka K and HJ Cho. 2000. Morphological variation in cysts of the gymnodinialean dinoflagellate Polykrikos. Micropaleontology 46:360-364.
  22. Matsuoka K and Y Fukuyo. 1986. Cyst and motile morphology of a colonial dinoflagellate Pheopolykrikos hartmannii (Zimmermann) comb. nov. J. Plankton Res. 8:811-818. https://doi.org/10.1093/plankt/8.4.811
  23. Matsuoka K and Y Fukuyo. 2000. Technical Guide for Modern Dinoflagellate Cyst Study. WESTPAC-HAB, Japan Society for the Promotion of Science. Tokyo, Japan. p. 43.
  24. Matsuoka K, H Kawami, S Nagai, M Iwataki and H Takayama. 2009. Re-examination of cyst-motile relationships of Polykrikos kofoidii Chatton and Polykrikos schwartzii Butschli (Gymnodiniales, Dinophyceae). Rev. Palaeobot. Palynology 154:79-90. https://doi.org/10.1016/j.revpalbo.2008.12.013
  25. Mertens KN, H Gu, PR Gurdebeke, Y Takano, D Clarke, H Aydin, Z Li, V Pospelova, HH Shin, Z Li, K Matsuoka and MJ Head. 2019. A review of rare, poorly known, and morphologically problematic extant marine organic-walled dinoflagellate cyst taxa of the orders Gymnodiniales and Peridiniales from the Northern Hemisphere. Mar. Micropaleontol. 159:101773. https://doi.org/10.1016/j.marmicro.2019.101773
  26. Nagai S, Y Matsuyama, H Takayama and Y Kotani. 2002. Morphology of Polykrikos kofoidii and P. schwartzii (Dinophyceae, Polykrikaceae) cysts obtained in culture. Phycologia 41:319-327. https://doi.org/10.2216/i0031-8884-41-4-319.1
  27. Natsuike M, K Yokohama, G Nishitani, Y Yamada, I Yoshinaga and A Ishikawa. 2017. Germination fluctuation of toxic Alexandrium fundyense and A. pacificum cysts and the relationship with bloom occurrences in Kesennuma Bay, Japan. Harmful Algae 62:52-59. https://doi.org/10.1016/j.hal.2016.11.018
  28. Perez CC, S Roy, M Levasseur and DM Anderson. 1998. Control of germination of Alexandrium tamarense (Dinophyceae) cysts from the lower St Lawrence Estuary(Canada). J. Phycol. 34:242-249. https://doi.org/10.1046/j.1529-8817.1998.340242.x
  29. Pfiester LA. 1977. Sexual reproduction of Peridinium gatuense (Dinophyceae). J. Phycol. 13:92-95. https://doi.org/10.1111/j.1529-8817.1977.tb02893.x
  30. Pfiester LA and DM Anderson. 1987. Dinoflagellate reproduction. pp. 611-648. In: The Biology of Dinoflagellates (Botanical Monographs, Vol. 21) (Taylor FJR, ed.). Blackwell Scientific Publications. Oxford, UK.
  31. Ronquist F and JP Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  32. Shin HH, JS Park, YO Kim, SH Baek, DI Lim and YH Yoon. 2012. Dinoflagellate cyst production and flux in Gamak Bay, Korea: A sediment trap study. Mar. Micropaleontol. 94:72-79. https://doi.org/10.1016/j.marmicro.2012.06.005
  33. Shin HH, Z Li, YO Kim, SW Jung, MS Han, WA Lim and YH Yoon. 2014. Morphological features and viability of Scrippsiella trochoidea cysts isolated from fecal pellets of the polychaete Capitella sp. Harmful Algae 28:37-45. https://doi.org/10.1016/j.hal.2014.05.005
  34. Shin HH, Z Li, HJ Kim, BS Park, JH Lee, AY Shin, TG Park, KW Lee, KH Han, JY Youn, KY Kwak, MH Seo, DK Kim, MH Son, DJ Kim, KS Shin and WA Lim. 2021. Alexandrium catenella (Group I) and A. pacificum (Group IV) cyst germination, distribution, and toxicity in Jinhae-Masan Bay, Korea. Harmful Algae 110:102122. https://doi.org/10.1016/j.hal.2021.102122
  35. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  36. Steidinger KA and J Williams. 1970. Dinoflagellates. Memoirs of the Hourglass Cruise Volume II. Marine Research Laboratory, Florida Department of Natural Resources. St. Petersburg, FL. p. 251.
  37. Steidinger KA and K Tangen. 1997. Dinoflagellates. pp. 387-584. In: Identifying Marine Phytoplankton (Tomas CR, ed.). Academic Press. San Diego, CA.
  38. Takano Y and T Horiguchi. 2006. Acquiring scanning electron microscopical, light microscopical and multiple gene sequence data from a single dinoflagellate cell. J. Phycol. 42: 251-256. https://doi.org/10.1111/j.1529-8817.2006.00177.x
  39. Tang YZ and CJ Gobler. 2012. The toxic dinoflagellate Cochlodinium polykrikoides (Dinophyceae) produces resting cysts. Harmful Algae 20:71-80. https://doi:10.1016/j.hal.2012.08.001
  40. Tang YZ, MJ Harke and CJ Gobler. 2013. Morphology, phylogeny, dynamics, and ichthyotoxicity of Pheopolykrikos hartmannii (Dinophyceae) isolates and blooms from New York, USA. J. Phycol. 49:1084-1094. https://doi.org/10.1111/jpy.12114
  41. Tillmann U and M Hoppenrath. 2013. Life cycle of the pseudocolonial dinoflagellate Polykrikos kofoidii(Gymnodiniales, Dinoflagellata). J. Phycol. 49:298-317. https://doi.org/10.1111/jpy.12037
  42. Vahtera E, BG Crespo, DJ McGillicuddy Jr, K Olli and DM Anderson. 2014. Alexandrium fundyense cyst viability and germling survival in light vs. dark at a constant low temperature. DeepSea Res. Part II-Top. Stud. Oceanogr. 103:112-119. https://doi.org/10.1016/j.dsr2.2013.05.010
  43. Zimmermann W. 1930. Neue und wenig bekannte Kleinalgen von Neapel I-V. Zeitschrift fur Botany 23:419-442.
  44. Zonneveld KAF. 1997. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). Rev. Palaeobot. Palynology 97:319-337. https://doi.org/10.1016/S0034-6667(97)00002-X