DOI QR코드

DOI QR Code

Effects of bis(2-ethylhexyl) phthalate(DEHP) on plant soil-borne pathogenic bacterium Pectobacterium carotovorum in vitro

Bis(2-ethylhexyl) phthalate가 in vitro에서 식물 토양병원성 세균 Pectobacterium carotovorum에 미치는 영향

  • Yu-Ri Kim (Division of Agricultural Microbiology, National Institute of Agricultural Sciences) ;
  • Sang Tae Kim (Division of Agricultural Microbiology, National Institute of Agricultural Sciences) ;
  • Mee Kyung Sang (Division of Agricultural Microbiology, National Institute of Agricultural Sciences)
  • 김유리 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김상태 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2022.10.11
  • Accepted : 2022.11.04
  • Published : 2022.12.31

Abstract

Bis(2-ethylhexyl) phthalate (DEHP) is one of the plasticizers used in the polyvinyl chloride(PVC) industry. It is known to be easily released into the environment. In this study, we investigated effects of DEHP on growth, metabolic pathway, and virulence gene expression in soil-borne bacterial plant pathogen, Pectobacterium carotovorum SCC1 using in vitro assays. As a result, DEHP at 20 ㎍ mL-1 did not affect the growth, cell membrane permeability, or ATPase activity of P. carotovorum SCC1. However, it decreased succinyl-CoA synthase (SCS) activity in the tricarboxylic acid (TCA) cycle. Relative expression levels of virulence genes encoding pectate lyase and pectin were differentially influenced by DEHP treatment. These results suggest that biological characteristics of P. carotovorum might be influenced by DEHP in soil.

본 연구는 플라스틱 가소제인 DEHP가 식물 병원균 중 하나인 P. carotovorum SCC1 균주에 미치는 영향을 조사하였다. DEHP가 균주 생장과 대사에 미치는 영향을 조사한 결과, 개체군 변화에 유의한 영향을 주지 않았으며, 세포막 투과성, ATPase 활성에 유의한 변화가 없었지만 TCA cycle 에서 DEHP 첨가에 따라 Succinyl-CoA synthase 활성이 유의적으로 감소하였다. 병원성 관련 유전자 발현량을 관찰한 결과 pectate lyase 유전자 발현량이 상대적으로 증가한 반면, pectinase 유전자는 상대적으로 발현량이 감소하였다. 따라서 DEHP는 P. carotovorum SCC1의 개체군 변화나 대사에는 유의미한 영향을 미치지 않지만 병원성 관련 유전자 발현에 영향을 미치므로 본 연구 결과는 향후 실제 식물 재배 조건에서 DEHP가 존재할 때 P. carotovorum의 특성에 관한 기초연구 자료로 활용할 수 있을 것이라 사료된다.

Keywords

Acknowledgement

본 연구는 국립농업과학원 연구개발사업(과제번호: PJ01475802)의 지원에 의해 수행되었음.

References

  1. Bago B, Y Martin, G Mejia, F Broto-Puig, J Diaz-Ferrero, M Agut and L Comellas. 2005. Di-(2-ethylhexyl) phthalate in sewage sludge and post-treated sludge: Quantitative determination by HRGC-MS and mass spectral characterization. Chemosphere 59:1191-1195. https://doi.org/10.1016/j.chemosphere.2004.11.077
  2. da Costa AM, VR de Oliveira Lopes, L Vidal, J Nicaud, AM de Castro and MAZ Coelho. 2020. Poly (ethylene terephthalate) (PET) degradation by Yarrowia lipolytica: Investigations on cell growth, enzyme production and monomers consumption. Process Biochem. 95:81-90. https://doi.org/10.1016/j.procbio.2020.04.001
  3. Du QZ, XW Fu and HL Xia. 2009. Uptake of di-(2-ethylhexyl) phthalate from plastic mulch film by vegetable plants. Food Addit. Contam. Part A-Chem. 26:1325-1329. https://doi.org/10.1080/02652030903081952
  4. Gao M, Z Zhang, Y Dong, Z Song and H Dai. 2020. Responses of bacterial communities in wheat rhizospheres in different soils to di-n-butyl and di(2-ethylhexyl) phthalate contamination. Geoderma 362:114126. https://doi.org/10.1016/j.geoderma.2019.114126
  5. Gascon M, D Valvi, J Forns, M Casas, D Martinez, J Julvez, N Monfort, R Ventura, J Sunyer and M Vrijheid. 2015. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Environ. Health 218:550-558. https://doi.org/10.1016/j.ijheh.2015.05.006
  6. Ge J, J Cheng, Y Li, QX Li and X Yu. 2020. Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica rapa var. chinensis. Environ. Res. 189:109953. https://doi.org/10.1016/j.envres.2020.109953
  7. Hansen P, K von Bargen, A Junger-Leif and A Haas. 2022. Laboratory plasticware induces expression of a bacterial virulence factor. mSphere 7:e00311-22. https://doi.org/10.1128/msphere.00311-22
  8. Igarashi A, S Ohtsu, M Muroi and K Tanamoto. 2006. Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-κB. Biol. Pharm. Bull. 29:2120-2122. https://doi.org/10.1248/bpb.29.2120
  9. Kim SH, GH Kim, JS Kim, JH Kim, YH Jeon, JH Cho and DH Kim. 2021. Changes in hematological parameters and plasma components of olive flounder, Paralichthys olivaceus exposed to acute microplastics. Korean J. Environ. Biol. 39:344-353. https://doi.org/10.11626/KJEB.2021.39.3.344
  10. Kravchenko U, N Gogoleva, N Kalubaka, A Kruk, Y Diubo, Y Gogolev and Y Nikolaichik. 2021. The PhoPQ two-component system is the major regulator of cell surface properties, stress responses and plant-derived substrate utilisation during development of Pectobacterium versatile-host plant pathosystems. Front. Microbiol. 11:621391. https://doi.org/10.3389/fmicb.2020.621391
  11. Kumar M, X Xiong, M He, DC Tsang, J Gupta, E Khan, S Harrad, D Hou, YS Ok and NS Bolan. 2020. Microplastics as pollutants in agricultural soils. Environ. Pollut. 265:114980. https://doi.org/10.1016/j.envpol.2020.114980
  12. Li C, J Chen, J Wang, P Han, Y Luan, X Ma and A Lu. 2016. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: concentrations, sources, and risk assessment. Sci. Total Environ. 568:1037-1043. https://doi.org/10.1016/j.scitotenv.2016.06.077
  13. Livak KJ and TD Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  14. Loh B, C Grant and R Hancock. 1984. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 26:546-551. https://doi.org/10.1128/AAC.26.4.546
  15. Ma T, P Christie, Y Teng and Y Luo. 2013. Rape(Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. Environ. Sci. Pollut. Res. 20:5289-5298. https://doi.org/10.1007/s11356-013-1520-5
  16. Marquez-Villavicencio MDP, RL Groves and AO Charkowski. 2011. Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis. 95:232-241. https://doi.org/10.1094/PDIS-07-10-0526
  17. Martins K, B Hagedorn, S Ali, J Kennish, B Applegate, M Leu, L Epp, C Pallister and P Zwollo. 2016. Tissue phthalate levels correlate with changes in immune gene expression in a population of juvenile wild salmon. Arch. Environ. Contam. Toxicol. 71:35-47. https://doi.org/10.1007/s00244-016-0283-7
  18. Meng X, A Chai, Y Shi, X Xie, Z Ma and B Li. 2017. Emergence of bacterial soft rot in cucumber caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis. 101:279-287. https://doi.org/10.1094/PDIS-05-16-0763-RE
  19. Net S, A Delmont, R Sempere, A Paluselli and B Ouddane. 2015. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ. 515:162-180. https://doi.org/10.1016/j.scitotenv.2015.02.013
  20. Oehlmann J, U Schulte-Oehlmann, W Kloas, O Jagnytsch, I Lutz, KO Kusk, L Wollenberger, EM Santos, GC Paull and KJ van Look. 2009. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. B-Biol. Sci. 364:2047-2062. https://doi.org/10.1098/rstb.2008.0242
  21. Perombelon MCM and A Kelman. 1980. Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18:361-387. https://doi.org/10.1146/annurev.py.18.090180.002045
  22. Rochester JR and AL Bolden. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 123:643-650. https://doi.org/10.1289/ehp.1408989
  23. Shafikova TN, YV Omelichkina, AG Enikeev, SV Boyarkina, DE Gvildis and AA Semenov. 2018. Ortho-phthalic acid esters suppress the phytopathogen capability for biofilm formation. Doklady Biol. Sci. 480:107-109. https://doi.org/10.1134/S0012496618030092
  24. Sikkema J, JA de Bont and B Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269:8022-8028. https://doi.org/10.1016/S0021-9258(17)37154-5
  25. Tournas VH. 2005. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit. Rev. Microbiol. 31:33-44. https://doi.org/10.1080/10408410590886024
  26. Tribedi P, S Sarkar, K Mukherjee and AK Sil. 2012. Isolation of a novel Pseudomonas sp. from soil that can efficiently degrade polyethylene succinate. Environ. Sci. Pollut. Res. 19:2115-2124. https://doi.org/10.1007/s11356-011-0711-1
  27. Tseng H, C Li, S Wu, H Su, T Wong, H Wu, Y Chang, S Huang, EM Tsai and J Suen. 2022. Di-(2-ethylhexyl) phthalate promotes allergic lung inflammation by modulating CD8α+ dendritic cell differentiation via metabolite MEHP-PPARγ axis. Front. Immunol. 13:581854. https://doi.org/10.3389/fimmu.2022.581854
  28. Wang J, Y Luo, Y Teng, W Ma, P Christie and Z Li. 2013. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 180:265-273. https://doi.org/10.1016/j.envpol.2013.05.036
  29. Wang J, X Liu, Y Li, T Powell, X Wang, G Wang and P Zhang. 2019a. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 691:848-857. https://doi.org/10.1016/j.scitotenv.2019.07.209
  30. Wang Z, C Wang, Y You, W Xu, Z Lv, Z Liu, W Chen, Y Shi and J Wang. 2019b. Response of Pseudomonas fluorescens to dimethyl phthalate. Ecotoxicol. Environ. Saf. 167:36-43. https://doi.org/10.1016/j.ecoenv.2018.09.078
  31. Yoshida S, K Hiraga, T Takehana, I Taniguchi, H Yamaji, Y Maeda, K Toyohara, K Miyamoto, Y Kimura and K Oda. 2016. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351:1196-1199. https://doi.org/10.1126/science.aad6359