DOI QR코드

DOI QR Code

A report of 31 unrecorded bacterial species isolated from freshwater

  • Hyangmi Kim (Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Sanghwa Park (Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Kyung June Yim (Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Ja Young Cho (Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Eui-Jin Kim (Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR))
  • Received : 2022.10.11
  • Accepted : 2022.11.28
  • Published : 2022.12.31

Abstract

A total of 31 bacterial strains were isolated from the Geum River basin in the Republic of Korea during our investigation of indigenous prokaryotic species. The isolated bacterial strains had high 16S rRNA gene sequence similarity (>98.7%) with those of validly published bacterial species, which have not been reported in Republic of Korea. The 31 bacterial strains were phylogenetically diverse and assigned to 4 phyla, 8 classes, 18 orders, 21 families, and 27 genera. At the genus level, the unreported species were affiliated with Kineococcus, Pedococcus, Rhodoluna, Salinibacterium, Rhodoluna, Arthrobacter, Williamsia, Nakamurella, Nocardioides of the class Actinobacteria, Patulibacter of the class Thermoleophilia, Pontibacter, Hymenobacter of the class Cytophagia, Flavobacterium of the class Flavobacteriia, Geomicrobium of the class Bacilli, Brevundimonas, Gellertiella, Rhizobium, Paracoccus, Taonella, Sphingomonas of the class Alphaproteobacteria, Burkholderia, Polaromonas, Hydrogenophaga, Chitinilyticum, Azospira, Zoogloea of the class Betaproteobacteria, and Pseudomonas of the class Gammaproteobacteria. The unreported bacterial species were further characterized by examining their morphological, cultural, physiological, and biochemical properties. The detailed descriptions of the 31 bacterial strains were provided.

Keywords

Acknowledgement

This study was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202201104).

References

  1. Dudgeon D, AH Arthington, MO Gessner, Z Kawabata, DJ Knowler, C Leveque, RJ Naiman, AH Prieur-Richard, D Soto, ML Stiassny and CA Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163-182. https://doi.org/10.1017/S1464793105006950
  2. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368-376. https://doi.org/10.1007/BF01734359
  3. Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20:406-416. https://doi.org/10.1093/sysbio/20.4.406
  4. Han JH, JY Cho, A Choi, SH and E Kim. 2020. A report of 42 unrecorded bacterial species isolated from fish intestines and clams in freshwater environments. Korean J. Environ. Biol. 38:433-449. https://doi.org/10.11626/KJEB.2020.38.3.433
  5. Lewis WH, G Tahon, P Geesink, DZ Sousa and TJG Ettema. 2021. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19:225-240. https://doi.org/10.1038/s41579-020-00458-8
  6. Li X. 2017. Influence of oil pollution on soil microbial community diversity. Chin. J. Biotechnol. 33:968-975. https://doi. org/10.13345/j.cjb.160467
  7. Rodriguez J, CMJ Gallampois, S Timonen, A Andersson, H Sinkko, P Haglund, MM Berglund, M Ripszam, D Figueroa, M Tysklind and O Rowe. 2018. Effects of organic pollutants on bacterial communities under future climate change scenarios. Front. Microbiol. 9:2926. https://doi.org/10.3389/fmicb.2018.02926
  8. Saitou N and M Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  9. Strayer DL and D Dudgeon. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29:344-358. https://doi.org/10.1899/08-171.1
  10. Tamura K, G Stecher and S Kumar. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38:3022-3027. https://doi.org/10.1093/molbev/msab120
  11. Tanentzap AJ, A Fitch, C Orland, EJS Emilson, KM Yakimovich, H Osterholz and T Dittmar. 2019. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. USA 116:24689-24695. https://doi.org/10.1073/pnas.1904896116
  12. Weisburg WG, SM Barns, DA Pelletier and DJ Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  13. Yoon SH, SM Ha, S Kwon, J Lim, Y Kim, H Seo and J Chun. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617. https://doi.org/10.1099/ijsem.0.001755